Specificity of practice results from differences in movement planning strategies.

Exp Brain Res

Département de Kinésiologie, Université de Montréal, C.P. 6128, Succursale Centre Ville, Montreal, QC Canada, H3C 3J7.

Published: November 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Withdrawing visual feedback after practice of a manual aiming task results in a severe decrease in aiming accuracy. This decrease in accuracy is such that participants are often less accurate than controls who are beginning practice of the task without visual feedback. These results have been interpreted as evidence that motor learning is specific to the sources of afferent information optimizing performance, because it could be processed at the exclusion of other sources of afferent information. The goal of the present study was to test this hypothesis. To reach our goal we evaluated whether online visual feedback prevented kinesthetic information to be used for: (1) eliminating movement anisotropy resulting from difference in limb inertia when aiming in different directions and (2) creating an internal model of limb mechanics. Participants practiced a manual aiming task with or without visual feedback and with knowledge of results. After this acquisition phase, participants performed two transfer tests. The first transfer test was performed without visual feedback and/or knowledge of results. The second transfer test was similar to the first one but participants initiated their movements from a different starting base. The results showed strong specificity effects in that withdrawing visual feedback resulted in large pointing bias and variability. However, the results of the two transfer tests showed that the processing of visual feedback did not prevent the processing of kinesthetic information used to eliminate movement anisotropy or to create an internal model of limb mechanics. Rather, specificity of practice effects resulted from participants using the same motor plan in transfer as they did in acquisition even though they had no longer access to visual feedback to modulate their movement online. These results indicate that during acquisition participants adopted different movement planning strategies depending on the source of afferent information available.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-007-1031-zDOI Listing

Publication Analysis

Top Keywords

visual feedback
32
specificity practice
8
movement planning
8
planning strategies
8
visual
8
withdrawing visual
8
feedback
8
manual aiming
8
aiming task
8
task visual
8

Similar Publications

Goal-oriented balance rehabilitation system for balance disorder.

Med Eng Phys

October 2025

Mechatronics Engineering Department, Sakarya University of Applied Sciences, Serdivan, Sakarya, 54600, Sakarya, Turkey; Systems Engineering Department, Military Technological College, Al Matar, Muscat, 111, Muscat, Oman. Electronic address:

Balance is a critical component of daily activities and overall quality of life. This study aims to develop a cost-effective exercise system for the rehabilitation of balance disorders by combining a sensor module with target-oriented video games. The system, designed using a microcontroller-controlled sensor module and Unity game engine, features a game component that provides visual feedback and is synchronized with the platform movements.

View Article and Find Full Text PDF

Neuroprostheses capable of providing Somatotopic Sensory Feedback (SSF) enables the restoration of tactile sensations in amputees, thereby enhancing prosthesis embodiment, object manipulation, balance and walking stability. Transcutaneous Electrical Nerve Stimulation (TENS) represents a primary noninvasive technique for eliciting somatotopic sensations. Devices commonly used to evaluate the effectiveness of TENS stimulation are often bulky and main powered.

View Article and Find Full Text PDF

In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).

View Article and Find Full Text PDF

The existence of free will has been called into question by Benjamin Libet's seminal experiment, who argued that our conscious decision is preceded by an unconscious decision reflected in the readiness potential (RP). Alternatively, it has been argue that the RP rather reflects a decision process in which different signals accumulate until they reach the intention threshold, at which point an agent experience their intention simultaneously. This raises the question what type of signal is accumulated given that no external information is provided.

View Article and Find Full Text PDF

The ability to detect small errors between sensory prediction in the brain and actual sensory feedback is important in rehabilitation after brain injury, where motor function needs to be restored. To date in the recent study, a delayed visual error detection task during upper limb movement was used to measure this ability for healthy participants or patients. However, this ability during walking, which is the most sought-after in brain-injured patients, was unclear.

View Article and Find Full Text PDF