Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We investigated the role of microRNAs (miRNA) 17-5p, 20a and 106a in monocytic differentiation and maturation. In unilineage monocytic culture generated by haematopoietic progenitor cells these miRNAs are downregulated, whereas the transcription factor acute myeloid leukaemia-1 (AML1; also known as Runt-related transcription factor 1, Runx1) is upregulated at protein but not mRNA level. As miRNAs 17-5p, 20a and 106a bind the AML1 mRNA 3'UTR, their decline may unblock AML1 translation. Accordingly, transfection with miRNA 17-5p-20a-106a suppresses AML1 protein expression, leading to M-CSF receptor (M-CSFR) downregulation, enhanced blast proliferation and inhibition of monocytic differentiation and maturation. Treatment with anti-miRNA 17-5p, 20a and 106a causes opposite effects. Knockdown of AML1 or M-CSFR by short interfering RNA (siRNA) mimics the action of the miRNA 17-5p-20a-106a, confirming that these miRNAs target AML1, which promotes M-CSFR transcription. In addition, AML1 binds the miRNA 17-5p-92 and 106a-92 cluster promoters and transcriptionally inhibits the expression of miRNA 17-5p-20a-106a. These studies indicate that monocytopoiesis is controlled by a circuitry involving sequentially miRNA 17-5p-20a-106a, AML1 and M-CSFR, whereby miRNA 17-5p-20a-106a function as a master gene complex interlinked with AML1 in a mutual negative feedback loop.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncb1613 | DOI Listing |