Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The 3D structure of bacteriorhodopsin (bR) obtained by X-ray diffraction or cryo-electron microscope studies is not always sufficient for a picture at ambient temperature where dynamic behavior is exhibited. For this reason, a site-directed solid-state 13C NMR study of fully hydrated bR from purple membrane (PM), or a distorted or disrupted lattice, is very valuable in order to gain insight into the dynamic picture. This includes the surface structure, at the physiologically important ambient temperature. Almost all of the 13C NMR signals are available from [3-13C]Ala or [1-13C]Val-labeled bR from PM, although the 13C NMR signals from the surface areas, including loops and transmembrane alpha-helices near the surface (8.7 angstroms depth), are suppressed for preparations labeled with [1-13C]Gly, Ala, Leu, Phe, Tyr, etc. due to a failure of the attempted peak-narrowing by making use of the interfered frequency of the frequency of fluctuation motions with the frequency of magic angle spinning. In particular, the C-terminal residues, 226-235, are present as the C-terminal alpha-helix which is held together with the nearby loops to form a surface complex, although the remaining C-terminal residues undergo isotropic motion even in a 2D crystalline lattice (PM) under physiological conditions. Surprisingly, the 13C NMR signals could be further suppressed even from [3-13C]Ala- or [1-13C]Val-bR, due to the acquired fluctuation motions with correlation times in the order of 10(-4) to 10(-5) s, when the 2D lattice structure is instantaneously distorted or completely disrupted, either in photo-intermediate, removed retinal or when embedded in the lipid bilayers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1562/2006.06-12-IR-917 | DOI Listing |