98%
921
2 minutes
20
The proper detection and repair of DNA damage is essential to the maintenance of genomic stability. The genome is particularly vulnerable during DNA replication, when endogenous and exogenous events can hinder replication fork progression. Stalled replication forks can fold into deleterious conformations and are also unstable structures that are prone to collapse or break. These events can lead to inappropriate processing of the DNA, ultimately resulting in genomic instability, chromosomal alterations and cancer. To cope with stalled replication forks, the cell relies on the replication checkpoint to block cell cycle progression, downregulate origin firing, stabilize the fork itself, and restart replication. The ATR (ATM and Rad3-related) kinase and its downstream effector kinase, Chk1, are central regulators of the replication checkpoint. Loss of these checkpoint proteins causes replication fork collapse and chromosomal rearrangements which may ultimately predispose affected individuals to cancer. This review summarizes our current understanding of how the ATR pathway recognizes and stabilizes stalled replication forks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dnarep.2007.02.015 | DOI Listing |
Autophagy Rep
September 2025
Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
Autophagy is an evolutionarily conserved cellular process that is prominent during bacterial infections. In this review article, we discuss how direct pathogen clearance via xenophagy and regulation of inflammatory products represent dual functions of autophagy that coordinate an effective antimicrobial response. We detail the molecular mechanisms of xenophagy, including signals that indicate the presence of an intracellular pathogen and autophagy receptor-mediated cargo targeting, while highlighting pathogen counterstrategies, such as bacterial effector proteins that inhibit autophagy initiation or exploit autophagic membranes for replication.
View Article and Find Full Text PDFNature
September 2025
Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
Nuclease-helicase DNA2 is a multifunctional genome caretaker that is essential for cell proliferation in a range of organisms, from yeast to human. Bi-allelic DNA2 mutations that reduce DNA2 concentrations cause a spectrum of primordial dwarfism disorders, including Seckel and Rothmund-Thomson-related syndromes. By contrast, cancer cells frequently express high concentrations of DNA2 (refs.
View Article and Find Full Text PDFSci Adv
August 2025
Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, 11560 University Avenue, Edmonton T6G 1Z2, Alberta, Canada.
Replication stress (RS) poses a threat to genome stability and drives genomic rearrangements. The homologous recombination (HR) pathway repairs stalled replication forks (RFs) and prevents such instability. Through an E3 ubiquitin ligase screen aimed at identifying regulators of RAD51, we identified macrophage erythroblast attacher (MAEA), a core component of C-terminal to Lish (CTLH) E3 ubiquitin ligase complex, as a regulator of the HR pathway.
View Article and Find Full Text PDFEMBO Rep
August 2025
Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, Feodor-Lynen-Strasse 21, Munich, 81377, Germany.
The CGG triplet repeat binding protein 1 (CGGBP1) binds to CGG repeats and has several important cellular functions, but how this DNA sequence-specific binding factor affects transcription and replication processes is an open question. Here, we show that CGGBP1 binds human gene promoters containing short (< 5) CGG-repeat tracts prone to R-loop formation. Loss of CGGBP1 leads to deregulated transcription, transcription-replication-conflicts (TRCs) and accumulation of Serine-5 phosphorylated RNA polymerase II (RNAPII), indicative of promoter-proximal stalling and a defect in transcription elongation.
View Article and Find Full Text PDFMethods Mol Biol
August 2025
Center for Education in Laboratory Animal Research, Chubu University, Kasugai, Aichi, Japan.
Complex chromosomal rearrangements (CCRs) present significant challenges and opportunities in cancer and congenital disease research. Reproducing these rearrangements experimentally in animal models has been challenging, limiting our insights into their mechanisms and impacts. Recql5 is a critical DNA helicase that participates in replication, transcription, and repair processes.
View Article and Find Full Text PDF