Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The development of model-based methods for incomplete data has been a seminal contribution to statistical practice. Under the assumption of ignorable missingness, one estimates the joint distribution of the complete data for thetainTheta from the incomplete or observed data y(obs). Many interesting models involve one-to-one transformations of theta. For example, with y(i) approximately N(mu, Sigma) for i= 1, ... , n and theta= (mu, Sigma), an ordinary least squares (OLS) regression model is a one-to-one transformation of theta. Inferences based on such a transformation are equivalent to inferences based on OLS using data multiply imputed from f(y(mis) | y(obs), theta) for missing y(mis). Thus, identification of theta from y(obs) is equivalent to identification of the regression model. In this article, we consider a model for two-level data with continuous outcomes where the observations within each cluster are dependent. The parameters of the hierarchical linear model (HLM) of interest, however, lie in a subspace of Theta in general. This identification of the joint distribution overidentifies the HLM. We show how to characterize the joint distribution so that its parameters are a one-to-one transformation of the parameters of the HLM. This leads to efficient estimation of the HLM from incomplete data using either the transformation method or the method of multiple imputation. The approach allows outcomes and covariates to be missing at either of the two levels, and the HLM of interest can involve the regression of any subset of variables on a disjoint subset of variables conceived as covariates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1541-0420.2007.00818.x | DOI Listing |