Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A central goal of computational biology is the prediction of phenotype from DNA and protein sequence data. Recent models of sequence change use in silico prediction systems to incorporate the effects of phenotype on evolutionary rates. These models have been designed for analyzing sequence data from different species and have been accompanied by statistical techniques for estimating model parameters when the incorporation of phenotype induces dependent change among sequence positions. A difficulty with these efforts to link phenotype and interspecific evolution is that evolution occurs within populations, and parameters of interspecific models should have population genetic interpretations. We show, with two examples, how population genetic interpretations can be assigned to evolutionary models. The first example considers the impact of RNA secondary structure on sequence change, and the second reflects the tendency for protein tertiary structure to influence nonsynonymous substitution rates. We argue that statistical fit to data should not be the sole criterion for assessing models of sequence change. A good interspecific model should also yield a clear and biologically plausible population genetic interpretation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msm085DOI Listing

Publication Analysis

Top Keywords

sequence change
12
population genetic
12
sequence data
8
models sequence
8
genetic interpretations
8
sequence
6
models
5
population
4
population genetics
4
genetics intraspecific
4

Similar Publications

Problem: Preeclampsia (PE) is a leading cause of perinatal maternal and fetal mortality. Clinical and pathological studies suggest that placental and decidual cell dysfunction may contribute to this condition. However, the pathogenesis of PE remains poorly understood.

View Article and Find Full Text PDF

Background: The SARS-CoV-2 virus has evolved subvariants since the emergence of the omicron variant in 2021. Whether these changes impact viral shedding and transmissibility is not known.

Methods: POSITIVES is a prospective longitudinal cohort of individuals with mild SARS-CoV-2 infection.

View Article and Find Full Text PDF

Transposition is a well-known genome rearrangement event that switches two consecutive sub-strings on a string. Since a transposition makes changes to a string, the genome here is just a string. The problem of transforming one string into the other by a sequence of transposition operations has attracted a lot of attention.

View Article and Find Full Text PDF

Background: Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models.

Methods: We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure.

View Article and Find Full Text PDF

Landscape genomics analysis reveals the genetic basis underlying cashmere goats and dairy goats adaptation to frigid environments.

Stress Biol

September 2025

Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.

Understanding the genetic mechanism of cold adaptation in cashmere goats and dairy goats is very important to improve their production performance. The purpose of this study was to comprehensively analyze the genetic basis of goat adaptation to cold environments, clarify the impact of environmental factors on genome diversity, and lay the foundation for breeding goat breeds to adapt to climate change. A total of 240 dairy goats were subjected to genome resequencing, and the whole genome sequencing data of 57 individuals from 6 published breeds were incorporated.

View Article and Find Full Text PDF