A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The Ets transcription factor GABP is required for cell-cycle progression. | LitMetric

The Ets transcription factor GABP is required for cell-cycle progression.

Nat Cell Biol

Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.

Published: March 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The transition from cellular quiescence (G0) into S phase is regulated by the mitogenic-activation of D-type cyclins and cyclin-dependent kinases (Cdks), the sequestration of the Cdk inhibitors (CDKIs), p21 and p27, and the hyperphosphorylation of Rb with release of E2F transcription factors. However, fibroblasts that lack all D-type cyclins can still undergo serum-induced proliferation and key E2F targets are expressed at stable levels despite cyclical Rb-E2F activity. Here, we show that serum induces expression of the Ets transcription factor, Gabpalpha, and that its ectopic expression induces quiescent cells to re-enter the cell cycle. Genetic disruption of Gabpalpha prevents entry into S phase, and selectively reduces expression of genes that are required for DNA synthesis and degradation of CDKIs, yet does not alter expression of D-type cyclins, Cdks, Rb or E2Fs. Thus, GABP is necessary and sufficient for re-entry into the cell cycle and it regulates a pathway that is distinct from that of D-type cyclins and CDKs.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncb1548DOI Listing

Publication Analysis

Top Keywords

d-type cyclins
16
ets transcription
8
transcription factor
8
cell cycle
8
cyclins cdks
8
factor gabp
4
gabp required
4
required cell-cycle
4
cell-cycle progression
4
progression transition
4

Similar Publications