A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Refolding of a membrane protein in a microfluidics reactor. | LitMetric

Refolding of a membrane protein in a microfluidics reactor.

Eur Biophys J

Department of Pharmacology, University of Bristol, University Walk, Bristol, UK.

Published: July 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Membrane protein production for structural studies is often hindered by the formation of non-specific aggregates from which the protein has to be denatured and then refolded to a functional state. We developed a new approach, which uses microfluidics channels, to refold protein correctly in quantities sufficient for structural studies. Green fluorescent protein (GFP), a soluble protein, and bacteriorhodopsin (BR), a transmembrane protein, were used to demonstrate the efficiency of the process. Urea-denatured GFP refolded as the urea diffused away from the protein, forming in the channel a uniform fluorescent band when observed by confocal microscopy. Sodium dodecyl sulphate-denatured BR refolded within the channel on mixing with detergent-lipid mixed micelles. The refolding, monitored by absorbance spectroscopy, was found to be flow rate dependent. This potential of microfluidic reactors for screening protein-folding conditions and producing protein would be particularly amenable for high-throughput applications required in structural genomics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-006-0125-zDOI Listing

Publication Analysis

Top Keywords

protein
9
membrane protein
8
structural studies
8
refolding membrane
4
protein microfluidics
4
microfluidics reactor
4
reactor membrane
4
protein production
4
production structural
4
studies hindered
4

Similar Publications