N-terminal and C-terminal cytosine deaminase domain of APOBEC3G inhibit hepatitis B virus replication.

World J Gastroenterol

Division of Clinical Immunology and Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, Hubei Province, China.

Published: December 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: To investigate the effect of human apolipoprotein B mRNA-editing enzyme catalytic-polypeptide 3G (APOBEC3G) and its N-terminal or C-terminal cytosine deaminase domain-mediated antiviral activity against hepatitis B virus (HBV) in vitro and in vivo.

Methods: The mammalian hepatoma cells HepG2 and HuH7 were cotransfected with APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain expression vector and 1.3-fold-overlength HBV DNA as well as the linear monomeric HBV of genotype B and C. For in vivo study, an HBV vector-based mouse model was used in which APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain expression vectors were co-delivered with 1.3-fold-overlength HBV DNA via high-volume tail vein injection. Levels of hepatitis B virus surface antigen (HBsAg) and hepatitis B virus e antigen (HBeAg) in the media of the transfected cells and in the sera of mice were determined by ELISA. The expression of hepatitis B virus core antigen (HBcAg) in the transfected cells was determined by Western blot analysis. Core-associated HBV DNA was examined by Southern blot analysis. Levels of HBV DNA in the sera of mice as well as HBV core-associated RNA in the liver of mice were determined by quantitative PCR and quantitative RT-PCR analysis, respectively.

Results: Human APOBEC3G exerted an anti-HBV activity in a dose-dependent manner in HepG2 cells, and comparable suppressive effects were observed on genotype B and C as that of genotype A. Interestingly, the N-terminal or C-terminal cytosine deaminase domain alone could also inhibit HBV replication in HepG2 cells as well as Huh7 cells. Consistent with in vitro results, the levels of HBsAg in the sera of mice were dramatically decreased, with more than 50 times decrease in the levels of serum HBV DNA and core-associated RNA in the liver of mice treated with APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain as compared to the controls.

Conclusion: Our findings provide probably the first evidence showing that APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain could suppress HBV replication in vitro and in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087596PMC
http://dx.doi.org/10.3748/wjg.v12.i46.7488DOI Listing

Publication Analysis

Top Keywords

n-terminal c-terminal
28
c-terminal cytosine
28
cytosine deaminase
28
deaminase domain
24
hepatitis virus
20
apobec3g n-terminal
20
hbv dna
20
sera mice
12
hbv
11
domain expression
8

Similar Publications

A germline IκBα mutation outside the signal reception domain blocks nuclear translocation of NFκB1 and associates with autoinflammation-like features.

Ann Rheum Dis

September 2025

Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hannover, Germany. Electronic address:

Objectives: IκBα controls the canonical activation of NFκB. IκBα gain-of-function due to NFKBIA variants affecting the N-terminus of IκBα-especially residues 32 and 36-manifests with combined immunodeficiency. The role of NFKBIA variants affecting other IκBα domains has not been described.

View Article and Find Full Text PDF

Biochemical characterization of a flavodiiron protein from bird parasite Histomonas meleagridis: superoxide as a reaction intermediate.

J Biol Chem

September 2025

Laboratory of Redox Biology and Metabolism, Scintillon Institute, San Diego, CA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA. Electronic address:

Histomonas meleagridis is a parasitic protozoan which causes histomoniasis (blackhead disease) in a wide range of birds, including domesticated chickens and turkeys, representing a significant health problem in avian veterinary medicine. Despite being classified as an anaerobic parasite, H. meleagridis can survive transient exposure to oxygen while little is known about the mechanisms that allow this organism to cope with exposure to varying oxygen levels.

View Article and Find Full Text PDF

The conjugation of proteins to the outer membranes of liposomes is a standard procedure used in bioanalytical and drug delivery approaches. Herein, we describe the development of a liposome-based surrogate assay for the quantification of SARS-CoV-2 neutralizing antibodies. Taking into consideration differences in amino acid sequences within the receptor-binding domain (RBD) of SARS-CoV-2 Spike proteins derived from five selected variants of concern (VoC), we studied the impact of coupling chemistries on physicochemical properties and antigenicity.

View Article and Find Full Text PDF

Background Over 300 mutations in have been identified as causes of early-onset Alzheimer's disease (EOAD). While these include missense mutations and a few insertions, deletions, or duplications, none result in open reading frame shifts, and all alter γ-secretase function to increase the long/short Aβ ratio. Methods We identified a novel heterozygous nonsense variant, c.

View Article and Find Full Text PDF

Investigation of a cryptic ligand binding site on Plasmodium falciparum Hsp90.

Bioorg Med Chem

August 2025

Department of Chemistry, Duke University, Durham, NC, USA; Department of Molecular Genetics & Microbiology, Duke Medical School, Durham, NC, USA. Electronic address:

The molecular chaperone heat shock protein 90 (Hsp90) has an important role in maintaining proteostasis in Plasmodium parasites, the causative agents of malaria, and is of interest as a potential antimalarial drug target. Inhibitors targeting its well-characterized N-terminal ATP-binding site are lethal, but the development of high-affinity binders with selectivity for the Plasmodium over the human homolog has been challenging given the high conservation of this domain. A binding site in the less conserved Hsp90 C-terminus has been reported to interact with nucleotides and inhibitors in other eukaryotic systems, which could offer an alternative route for antimalarial design.

View Article and Find Full Text PDF