Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We studied mu-opioid transmission in acute slices of rat neocortex using whole-cell recordings and single-cell reverse transcription-polymerase chain reaction. The mu-opioid receptor (MOR) was found in gamma-aminobutyric acidergic (GABAergic) interneurons that were either layer I cells frequently expressing neuropeptide Y or layers II-V cells expressing vasoactive intestinal peptide and enkephalin (Enk). We found that mu-opioid agonists inhibit these interneurons that are selectively excited by nicotinic agonists. The extensive overlap of mu-opioid and nicotinic responsiveness allowed mu-opioid agonists to inhibit nicotinic excitation of responsive interneurons and of their GABAergic output onto pyramidal cells. Finally, nicotinic stimulation resulted in a dynamic sequence where GABAergic transmission was first enhanced and then depressed below its baseline. This latter disinhibitory effect was prevented by a mu-opioid antagonist, indicating that excitation of nicotinic-responsive interneurons induced the release of endogenous Enk, which in turn led to MOR activation. Our results suggest that neocortical mu-opioid transmission acts as an inhibitory feedback onto nicotinic-responsive interneurons, which may change network excitability and inhibition patterns during cholinergic excitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cercor/bhl104 | DOI Listing |