Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High numbers of melanocytic naevi (moles), and mutations in the p16 gene (CDKN2A), are two strong risk factors for cutaneous malignant melanoma. We have previously reported linkage of mole count to the CDKN2A locus. Here, we report genome-wide scans for mole counts (differentiated into flat, raised and atypical subtypes) with a total of 796 microsatellite markers for 424 families with 1024 twins and siblings, plus genotypes for 690 parents. Inclusion of 221 pairs of MZ twins enabled separation of shared environmental and polygenic influences, so placing an upper limit to estimates of QTL variance. Maximum likelihood multipoint variance component methods were used to assess linkage of naevus count. Sex, age, body surface area, skin colour, hair colour, sunburn and facial freckles were included as covariates. Peak linkage of flat mole count was to regions on chromosomes 2, 9, 8 and 17 with lod scores 2.95, 2.95, 2.50 and 2.15, respectively. The support for linkage to the CDKN2A gene region (9p21) increased to 3.42 when additional fine mapping markers were added. For raised mole count, there was suggestive evidence of linkage in our sample to chromosome 16 (lod=1.87), and for atypical mole count on chromosomes 1, 6 and X with lod scores of 2.20, 2.00 and 2.00, respectively. The multivariate linkage peaks generally match those from individual trait analyses, with the exception of a new peak on chromosome 4 (point-wise empirical P-value=0.001). We replicate our earlier finding of linkage to CDKN2A and discovering linkage to several novel regions that may also influence risk of the development of malignant melanoma.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.ejhg.5201729DOI Listing

Publication Analysis

Top Keywords

mole count
16
linkage cdkn2a
12
linkage
9
naevus count
8
malignant melanoma
8
chromosomes lod
8
lod scores
8
count
6
cdkn2a
5
mole
5

Similar Publications

Rapid Copolymer Analysis of Unresolved Mass Spectra by Artificial Intelligence.

Anal Chem

September 2025

Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.

In this Article, we present a novel data analysis method for the determination of copolymer composition from low-resolution mass spectra, such as those recorded in the linear mode of time-of-flight (TOF) mass analyzers. Our approach significantly extends the accessible molecular weight range, enabling reliable copolymer composition analysis even in the higher mass regions. At low resolution, the overlapping mass peaks in the higher mass range hinder a comprehensive characterization of the copolymers.

View Article and Find Full Text PDF

Background: Familial melanoma represents approximately 10% of cutaneous melanomas. Individuals with pathogenic germline variants have a higher risk of developing multiple primary melanomas (MPM). However, differences in clinical, dermoscopic, and reflectance confocal microscopy (RCM) features between variant carriers and non-carriers are not well established.

View Article and Find Full Text PDF

Patients diagnosed with melanoma are at increased risk of developing multiple primary melanomas (MPMs). Identifying clinical and genetic factors associated with MPM is critical for implementing personalized surveillance strategies. This study aims to describe the clinical, histopathological, and genetic characteristics of patients with MPM managed in a tertiary hospital and to contextualize findings within the current literature.

View Article and Find Full Text PDF

: Choroidal nevi are common, benign tumors. These tumors rarely cause adverse retinal sequalae, but when they do, they can lead to disruption of the outer retina and vision loss. In this paper, we used high-resolution retinal imaging modalities, optical coherence tomography (OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO), to longitudinally monitor retinal sequelae of a submacular choroidal nevus.

View Article and Find Full Text PDF