98%
921
2 minutes
20
Researchers working on environmentally relevant organisms, populations, and communities are increasingly turning to the application of OMICS technologies to answer fundamental questions about the natural world, how it changes over time, and how it is influenced by anthropogenic factors. In doing so, the need to capture meta-data that accurately describes the biological "source" material used in such experiments is growing in importance. Here, we provide an overview of the formation of the "Env" community of environmental OMICS researchers and its efforts at considering the meta-data capture needs of those working in environmental OMICS. Specifically, we discuss the development to date of the Env specification, an informal specification including descriptors related to geographic location, environment, organism relationship, and phenotype. We then describe its application to the description of environmental transcriptomic experiments and how we have used it to extend the Minimum Information About a Microarray Experiment (MIAME) data standard to create a domain-specific extension that we have termed MIAME/Env. Finally, we make an open call to the community for participation in the Env Community and its future activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/omi.2006.10.172 | DOI Listing |
Bioinformatics
September 2025
Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania United States.
Summary: Causal mediation analysis investigates the role of mediators in the relationship between exposure and outcome. In the analysis of omics or imaging data, mediators are often high-dimensional, presenting challenges such as multicollinearity and interpretability. Existing methods either compromise interpretability or fail to effectively prioritize mediators.
View Article and Find Full Text PDFJ Exp Bot
September 2025
Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan (MI), Italy.
Heterosis refers to the superior performance of hybrids over their parents (inbred lines) in one or more characteristics. Hence, understanding this process is crucial for addressing food insecurity. This review explores the traditional genetic models proposed to explain heterosis and integrates them with emerging perspectives such as epigenetic studies and multi-omics approaches which are increasingly used to investigate the molecular basis of heterosis in plants.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.
Plastic pollution is a major environmental challenge, with millions of tonnes produced annually and accumulating in ecosystems, causing long-term harm. Conventional disposal methods, such as landfilling and incineration, are often inadequate, emphasising the need for sustainable solutions like bioremediation. However, the bacterial biodiversity involved in plastic biodegradation remains poorly understood.
View Article and Find Full Text PDFNat Methods
September 2025
Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
The growing availability of single-cell omics datasets presents new opportunities for reuse, while challenges in data transfer, normalization and integration remain a barrier. Here we present scvi-hub: a platform for efficiently sharing and accessing single-cell omics datasets using pretrained probabilistic models. It enables immediate execution of fundamental tasks like visualization, imputation, annotation and deconvolution on new query datasets using state-of-the-art methods, with massively reduced storage and compute requirements.
View Article and Find Full Text PDFEnviron Res
September 2025
School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. Electronic address:
Human activities have introduced a wide range of contaminants into aquatic ecosystems, posing substantial ecological and health risks. Robust bioindicators are essential for accurately predicting these impacts. Since the early 1980s, planarians-freshwater flatworms known for their remarkable regenerative ability and neurologically relevant system-have been used in ecotoxicology, witnessing renewed scientific interest post-2010.
View Article and Find Full Text PDF