A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Compensatory substitutions restore normal core assembly in simian immunodeficiency virus isolates with Gag epitope cytotoxic T-lymphocyte escape mutations. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The evolution of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) as they replicate in infected individuals reflects a balance between the pressure on the virus to mutate away from recognition by dominant epitope-specific cytotoxic T lymphocytes (CTL) and the structural constraints on the virus' ability to mutate. To gain a further understanding of the strategies employed by these viruses to maintain replication competency in the face of the intense selection pressure exerted by CTL, we have examined the replication fitness and morphological ramifications of a dominant epitope mutation and associated flanking amino acid substitutions on the capsid protein (CA) of SIV/simian-human immunodeficiency virus (SHIV). We show that a residue 2 mutation in the immunodominant p11C, C-M epitope (T47I) of SIV/SHIV not only decreased CA protein expression and viral replication, but it also blocked CA assembly in vitro and virion core condensation in vivo. However, these defects were restored by the introduction of upstream I26V and/or downstream I71V substitutions in CA. These findings demonstrate how flanking compensatory amino acid substitutions can facilitate viral escape from a dominant epitope-specific CTL response through the effects of these associated mutations on the structural integrity of SIV/SHIV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1563819PMC
http://dx.doi.org/10.1128/JVI.00068-06DOI Listing

Publication Analysis

Top Keywords

immunodeficiency virus
16
simian immunodeficiency
8
dominant epitope-specific
8
amino acid
8
acid substitutions
8
virus
5
compensatory substitutions
4
substitutions restore
4
restore normal
4
normal core
4

Similar Publications