Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although quiescent in normal brain, reactive astrocytes can proliferate in various disorders. We examined the impact of HIV-1 on astrocyte proliferation in cultures exposed to VSVg env-pseudotyped HIV-1 which yields high levels of infection. HIV-1, while increasing the proliferation of uninfected (p24-) astrocytes, strongly inhibited proliferation of productively infected (p24+) cells. The cell cycle arrest was G1/S rather than G2/M, a type commonly attributed to Vpr. No clear role of Vpr or Nef could be identified. Adenovirus-mediated expression of Nef (a model of "restricted" infection) induced M-phase arrest of astrocytes. We speculate that HIV-1 is a significant modulator of astrocyte proliferation in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2006.05.020DOI Listing

Publication Analysis

Top Keywords

astrocyte proliferation
12
productively infected
8
proliferation
5
hiv-1
5
modulation astrocyte
4
proliferation hiv-1
4
hiv-1 differential
4
differential effects
4
effects productively
4
infected uninfected
4

Similar Publications

Pediatric high-grade gliomas remain a significant therapeutic challenge due to their resistance to conventional treatments. The aim of this study was to investigate the cytotoxic potential of solamargine (SM), a natural glycoalkaloid, alone and in combination with the chemotherapeutic agent temozolomide (TMZ) against the human KNS-42 glioma cell line. Solamargine significantly reduced cell viability and proliferation in a concentration-, time-, and hypoxia-dependent manner, while selectively sparing non-tumor human astrocytes (NHA).

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Health risks related to 900 MHz 2 G frequency exposure remain inconclusive under current regulatory standards. Research into potential long-term effects is ongoing, particularly as the use of mobile networks and wireless devices increases. This study investigates the effects of non-thermal exposure levels of mobile phone 900 MHz radiofrequency electromagnetic field (RF-EMF) on rodent neurodevelopment.

View Article and Find Full Text PDF

This study aims to explore the effects and mechanisms of 4'-O-methylbavachalcone(MeBavaC), an active compound from Psoraleae Fructus, in regulating white matter neuroinflammation to improve vascular cognitive impairment. Male Sprague-Dawley(SD) rats were randomly divided into four groups: sham group, model group, high-dose MeBavaC group(14 mg·kg~(-1)), and low-dose MeBavaC group(7 mg·kg~(-1)). The rat model of chronic cerebral hypoperfusion(CCH) was established using bilateral common carotid artery occlusion.

View Article and Find Full Text PDF

Molecular components of the FPR2/ALX pathway participate in astrocyte-neuron resolution responses to afford maneb-induced toxicity.

Cell Mol Life Sci

August 2025

Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000, Bahía Blanca, Argentina.

Environmental toxicants such as maneb (MB), a dithiocarbamate pesticide, trigger progressive neuronal death, probably due to the imbalance in inflammation/resolution mechanisms, resulting in the onset of neurodegeneration. The inflammation/resolution balance is governed by G protein-coupled receptor (GPCR) signaling, but it has been poorly described in the Central Nervous System (CNS), since resolution GPCR ligands are negligible and elusive lipid compounds. These mediators are mainly synthesized by lipoxygenases (ALOX) from arachidonic acid (AA) and docosahexaenoic acid (DHA) released by specific phospholipases A2 (PLA2).

View Article and Find Full Text PDF