Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Precise and repeatable measurements of pulmonary function in intact mice or rats are becoming increasingly important for experimental investigations on various respiratory disorders like asthma and for pharmacological, safety-pharmacological or toxicological testing of drugs or chemicals. This review provides a short overview of typical in-vivo measurement techniques, discusses their advantages and disadvantages and presents two of these methods in detail: the noninvasive head-out body plethysmography and an invasive but repeatable body-plethysmography in orotracheally intubated rodents. It will be demonstrated that these methods are able to monitor bronchoconstriction in safety-pharmacological tests or in asthma models showing early allergic response or late airway hyperresponsiveness in response to inhaled allergens and demonstrate drug effects on pulmonary endpoints. The changes in the respective parameters such as tidal midexpiratory flow (EF(50)) or lung resistance in typical bronchoconstriction models have been measured in the same animals and compared for validation purposes. It is concluded that both invasive and noninvasive pulmonary function tests are capable of detecting allergen-specific as well as non-allergic bronchoconstriction in intact mice or rats. The invasive determination of resistance is superior in sensitivity, whereas the noninvasive EF(50) method is particularly appropriate for quick and repeatable screening of respiratory function in large numbers of mice and rats or if the conscious animal has to be tested (e.g. safety pharmacology). The use of both techniques in a large number of studies in the last years have demonstrated that they provide useful and necessary information on pulmonary mechanics in studies of respiratory disorders including experimental models of asthma, in investigations of pulmonary pharmacology, safety pharmacology and toxicology in mice and rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vascn.2006.04.006DOI Listing

Publication Analysis

Top Keywords

mice rats
16
invasive noninvasive
8
pulmonary function
8
intact mice
8
respiratory disorders
8
safety pharmacology
8
pulmonary
5
invasive
4
noninvasive lung
4
function
4

Similar Publications

Major depressive disorder affects millions worldwide, yet current treatments require prolonged administration. In contrast, ketamine produces rapid antidepressant effects by blocking spontaneous N-Methyl-D-Aspartate (NMDA) receptor signaling, which lifts the suppression of protein synthesis and triggers homeostatic synaptic plasticity. Here, we identify a parallel signaling pathway involving metabotropic glutamate receptor 5 (mGluR5) that promotes rapid antidepressant-like effects.

View Article and Find Full Text PDF

Mitoribosome-Targeting Antibiotics Suppress Osteoclastogenesis and Periodontitis-Induced Bone Loss by Blocking Mitochondrial Protein Synthesis.

FASEB J

September 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials

The onset and progression of periodontitis are closely related to metabolic reprogramming in the periodontal microenvironment, with osteoclasts playing a critical role in tissue destruction. Single-cell RNA sequencing (scRNA-seq) of periodontal tissues from healthy individuals and patients with severe chronic periodontitis revealed a significant increase in the expression of mitochondrial-related genes during osteoclast differentiation, suggesting the critical role of mitochondrial function in this process. This study investigates the potential of the novel mitoribosome-targeting antibiotic radezolid in inhibiting osteoclast differentiation.

View Article and Find Full Text PDF

Exosomes derived from various cells have been demonstrated to contribute to cardiac repair by regulating macrophage polarization in myocardial infarction. However, how exosomes secreted from cardiomyocytes under hypoxia-ischemia (Hypo-Exo) regulate macrophage polarization in the local tissues is elusive. This study aimed to determine the underlying mechanisms by which Hypo-Exo polarized M2 macrophages.

View Article and Find Full Text PDF

Intracellular trafficking of secretory and membrane proteins from the endoplasmic reticulum (ER) to the cell surface, via the secretory pathway, is crucial to the differentiated function of epithelial tissues. In the thyroid gland, a prerequisite for such trafficking is proper protein folding in the ER, assisted by an array of ER molecular chaperones. One of the most abundant of these chaperones, Glucose-Regulated-Protein-170 (GRP170, encoded by Hyou1), is a noncanonical hsp70-like family member.

View Article and Find Full Text PDF

Rodents' ability to encode the whisking phase has been extensively documented through neuronal recordings from ascending sensory pathways. Yet, while indicating that reafference originates from the mechanoreceptors, the mechanistic underpinnings of the whisking phase encoding within the follicle remain unclear. Here we present anatomical, histological, and biomechanical evidence for the presence of a distinctive elastic segment (ES) within the basal part of the whisker shaft inside the follicle.

View Article and Find Full Text PDF