98%
921
2 minutes
20
Motivation: Comparing two or more complex protein mixtures using liquid chromatography mass spectrometry (LC-MS) requires multiple analysis steps to locate and quantitate natural peptides within a single experiment and to align and normalize findings across multiple experiments.
Results: We describe msInspect, an open-source application comprising algorithms and visualization tools for the analysis of multiple LC-MS experimental measurements. The platform integrates novel algorithms for detecting signatures of natural peptides within a single LC-MS measurement and combines multiple experimental measurements into a peptide array, which may then be mined using analysis tools traditionally applied to genomic array analysis. The platform supports quantitation by both label-free and isotopic labeling approaches. The software implementation has been designed so that many key components may be easily replaced, making it useful as a workbench for integrating other novel algorithms developed by a growing research community.
Availability: The msInspect software is distributed freely under an Apache 2.0 license. The software as well as a Zip file with all peptide feature files and scripts needed to generate the tables and figures in this article are available at http://proteomics.fhcrc.org/.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btl276 | DOI Listing |
Front Immunol
September 2025
Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2025
Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
Brillouin microscopy allows mechanical investigations of biological materials at the subcellular level and can be integrated with Raman spectroscopy for simultaneous chemical mapping, thus enabling a more comprehensive interpretation of biomechanics. The present study investigates different in vitro glioblastoma models using a combination of Brillouin and Raman microspectroscopy. Spheroids of the U87-MG cell line and two patient-derived cell lines as well as patient-derived organoids were used.
View Article and Find Full Text PDFDiabetes Metab Syndr Obes
September 2025
Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia.
Insulin therapy remains a cornerstone in the management of type 2 diabetes mellitus (T2DM), especially in patients experiencing progressive loss of pancreatic beta-cell function or those with inadequate glycemic control despite oral antidiabetic therapy. This review synthesized clinical outcomes from 44 peer-reviewed case reports published between 2019 and 2024, identified through systematic searches in PubMed and Scopus. The included cases involved 15 males and 29 females, with patient ages ranging from 11 to 91 years (mean 53 ± 20.
View Article and Find Full Text PDFFront Aging Neurosci
August 2025
Yan'an Medical College of Yan'an University, Yan'an, Shaanxi, China.
The intramembrane aspartic protease, γ-secretase, is a heterotetrameric protein complex composed of four integral membrane proteins: presenilin (PSEN), nicastrin (NCT), Anterior pharynx defective-1 (APH-1), and presenilin enhancer 2 (PEN-2). These components are sequentially assembled into a functional complex. γ-secretase is ubiquitously expressed in all cells and tissues and exhibits enzymatic activity akin to "molecular scissors" by cleaving various type I transmembrane proteins.
View Article and Find Full Text PDFJ Appl Stat
February 2025
Department of Mathematics and State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, People's Republic of China.
We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures.
View Article and Find Full Text PDF