Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
cis-Diamminedichloroplatinum(II) (CDDP) is an important chemotherapeutic agent used in the treatment of a wide variety of solid tumors. We have recently shown that aquated forms of cisplatin (aqua-Pt) rapidly accumulate in K562 and GLC4 cultured cells, in comparison to CDDP. Thus, when cells are incubated with aquated forms of cisplatin a gradient of concentration is observed after a short time, approximately 40 min, with an intracellular concentration of aqua-Pt of 20-30 times higher than that of extracellular aqua-Pt. The same gradient of concentration is observed when cells are incubated with CDDP but it takes a longer time, i.e., about 24 h. Therefore, the question arises as to the identity of the intracellular sites of accumulation of aqua-Pt. Using several agents to modulate membrane potential, acidic compartment pH and/or ATP level, we obtained evidence that aqua-Pt may accumulate rapidly inside mitochondria as this accumulation is energy- and membrane-potential-dependent. However, aqua-Pt complexes are not characterized by a delocalized charge and a lipophilic character that would permit their movement through the inner membrane. Therefore, it is suggested that intracellular aqua-Pt reacts rapidly with glutathione with the resultant complex being transported inside the mitochondria via one of the known glutathione transporters, i.e., dicarboxylate and/or 2-oxoglutarate transporters present in the inner membrane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10863-006-9001-x | DOI Listing |