Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The objective of this work was to obtain gene delivery vectors with high efficiency induced by application of local hyperthermia. As a building construct for the polyplex particles, block copolymers were used, in which one block represents poly(ethyleneimine) (PEI) and another block a statistical copolymer of poly(N-isopropylacryamide) (PNIPAM) and different hydrophilic monomers (acrylamide or vinylpyrrolidinone). The block copolymers were synthesizized by radical polymerization of the corresponding monomers directly onto PEI. The complexation of DNA with these copolymers led to small, charge neutral particles, which aggregated upon increasing the temperature from 37 degrees C to 42 degrees C. This aggregation was found to be responsible for the enhanced transfection efficiency of these formulations under hyperthermic conditions. Gene expression in cells treated by hyperthermia was found to be nearly 2 orders of magnitude higher in comparison to cells transfected at physiological temperature. The mechanism by which hyperthermia influences the gene transfection efficiency is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc050292z | DOI Listing |