A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Carvedilol action is dependent on endogenous production of nitric oxide. | LitMetric

Carvedilol action is dependent on endogenous production of nitric oxide.

Am J Hypertens

Department of Biochemistry, Faculty of Medical Sciences, Universidade Nova de Lisboa, Campo Mártires da Pátria, Lisboa, Portugal.

Published: April 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Carvedilol is known to be an adrenoreceptor blocker and free radical scavenger, used in hypertension and cardiac failure. However, its therapeutic actions cannot be fully explained by these mechanisms. In these studies, we tested the hypothesis that carvedilol action is associated with the synthesis/release of nitric oxide (NO).

Methods: Male Wistar rats (n = 22), 9 weeks old, were anesthetized with an intraperitoneal injection of sodium pentobarbital. Mean arterial pressure and arterial NO levels were monitored throughout the experiments. Carvedilol (1 mg/kg, intravenously [iv]) effects were evaluated before and after NO synthase (NOS) inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME, 5 mg/kg, iv).

Results: Carvedilol induced a significant decrease in basal arterial pressure (from 126.6 +/- 4.3 mm Hg to 75.9 +/- 3.0 mm Hg, P < .001) and significant increase in NO levels (from 17.9 +/- 1.7 micromol/L to 32.2 +/- 2.5 micromol/L, P < .001). After administration of L-NAME the arterial pressure increased (129.9 +/- 5.0 mm Hg, P < .001) with concomitant decrease in NO levels (13.4 +/- 1.6 micromol/L, P < .01). The second carvedilol administration (post-L-NAME) did not affect either arterial pressure (108.3 +/- 8.0 mm Hg) or NO levels (22.1 +/- 1.3 micromol/L).

Conclusions: Our results suggest that the carvedilol-induced decrease of blood pressure is associated with an increase of plasma NO levels. Furthermore, NOS inhibition results in impairment of carvedilol hemodynamic effects and plasma NO levels. Therefore, these results are consistent with the hypothesis that the hemodynamic effect of carvedilol is in part dependent on endogenous NO production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.amjhyper.2005.11.011DOI Listing

Publication Analysis

Top Keywords

arterial pressure
16
+/- micromol/l
12
carvedilol
8
carvedilol action
8
dependent endogenous
8
endogenous production
8
nitric oxide
8
+/-
8
+/- 001
8
plasma levels
8

Similar Publications