98%
921
2 minutes
20
Two-component signal transduction systems (2-CS) play an important role in bacterial pathogenesis. In the work presented here, we have studied the effects of a mutation in the Mycobacterium tuberculosis (Mtb) PhoPR 2-CS on the pathogenicity, physiology and global gene expression of this bacterial pathogen. Disruption of PhoPR causes a marked attenuation of growth in macrophages and mice and prevents growth in low-Mg2+ media. The inability to grow in THP-1 macrophages can be partially overcome by the addition of excess Mg2+ during infection. Global transcription assays demonstrate PhoP is a positive transcriptional regulator of several genes, but do not support the hypothesis that the Mtb PhoPR system is sensing Mg2+ starvation, as is the case with the Salmonella typhimurium PhoPQ 2-CS. The genes that were positively regulated include those found in the pks2 and the msl3 gene clusters that encode enzymes for the biosynthesis of sulphatides and diacyltrehalose and polyacyltrehalose respectively. Complementary biochemical studies, in agreement with recent results from another group, indicate that these complex lipids are also absent from the phoP mutant, and the lack of these components in its cell envelope may indirectly cause the mutant's high-Mg2+ growth requirement. The experiments reported here provide functional evidence for the PhoPR 2-CS involvement in Mtb pathogenesis, and they suggest that a major reason for the attenuation observed in the phoP mutant is the absence of certain complex lipids that are known to be important for virulence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2006.05102.x | DOI Listing |
RSC Adv
September 2025
Department of Chemistry, Central University of Karnataka Kalaburagi-585 367 Karnataka India.
This research work details the use of a molecular hybridization technique to create a library of four series of hydrazineyl-linked imidazo[1,2-]pyrimidine-thiazole derivatives. The structure of one of the final products, K2, was validated using single-crystal X-ray diffraction. Twenty-six novel hybrid molecules (K1-K26) were synthesized and tested for activity against the H37Rv strain.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Department of Pulmonology, Institute of Pneumology, Bucharest, Romania.
Sarcoidosis is a multisystem granulomatous disorder of unknown etiology, characterized by the formation of non-caseating granulomas in affected tissues and organs. In over half of the cases, the disease undergoes spontaneous remission. In contrast, tuberculosis (TB) is an infectious disease caused by , which, if left untreated, can be fatal.
View Article and Find Full Text PDFCureus
August 2025
Respiratory Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND.
Tuberculosis (TB) is a multisystem infectious disease with both pulmonary and extrapulmonary manifestations. TB can also induce a hypercoagulable state, setting off a cascade of changes in the body, including systemic inflammation, endothelial dysfunction, and abnormalities in the coagulation and fibrinolytic pathways. Collectively, these factors significantly increase the risk of venous thromboembolism, such as deep vein thrombosis and pulmonary embolism.
View Article and Find Full Text PDFNed Tijdschr Tandheelkd
September 2025
the Department of Internal Medicine, University Medical Center Groningen (UMCG).
A 27-year-old man from Ethiopia had undergone an extraction of a molar in Libya ten months earlier, after which a submental swelling developed. For that reason, an oral and maxillofacial surgery department was consulted. Clinical examination showed a tender, firm-to-the-touch, non-mobile swelling with central ulceration.
View Article and Find Full Text PDFChem Biol Drug Des
September 2025
School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa.
Molecular hybridization of isoniazid with hydrophobic aromatic moieties represents a promising strategy for the development of novel anti-tubercular therapeutics. In this study, a series of hybrid molecules (5a-i) was synthesized by linking isoniazid with aromatic sulfonate esters via a hydrazone bridge. Molecular docking studies revealed that these compounds interact effectively with the catalytic triad of the InhA enzyme (Y158, F149, and K165), suggesting their potential as InhA inhibitors.
View Article and Find Full Text PDF