98%
921
2 minutes
20
Background: Since the 1970s a variety of experimental techniques have been employed in an attempt to identify urinary biomarkers of renal injury. While these approaches have met with some success, modern proteomic tools now permit broad based high-throughput analysis of the urinary proteome.
Methods: Using the ICAT isotopic labeling based LC/MS/MS approach, comparative urinary protein profiling was performed in a murine model of membranoproliferative glomerulonephritis. Paired samples were analyzed mice with a targeted deletion of the complement regulatory protein factor H (FH-/-) and control mice.
Results: 25 distinct urinary proteins were identified of which 7 were differentially expressed in the FH-/- mice. Two proteins were markedly altered in the urine of FH-/- mice compared to controls: uromodulin (5.5-fold lower) and the MHC class II molecule H2e (8.6-fold higher). Differential expression was confirmed by Western blot and RT-PCR. Immunofluorescent staining demonstrated a marked increased expression of H2e and a reduction of uromodulin expression in the tubular epithelium of FH-/- mice.
Conclusions: These findings provide insight into early complement-dependent alterations in tubular protein expression which may play critical roles in the development of tubulointerstitial disease, and provide experimental support for the use of urinary proteomic profiling in murine models of renal injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000092211 | DOI Listing |
Am J Physiol Cell Physiol
September 2025
Humboldt-University zu Berlin, Berlin, Germany.
Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.
View Article and Find Full Text PDFNephrol Dial Transplant
September 2025
Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.
Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.
J Extracell Vesicles
September 2025
Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
Osteoarthritis (OA), the prevalent debilitating joint disorder, is accelerated by dysregulated intercellular crosstalk, yet the role of fibroblast-like synoviocyte (FLS)-derived extracellular vesicles and particles (EVPs) in disease progression remains to be elucidated. Here, integrative analysis of clinical specimens, animal models, and publicly available datasets revealed significant alterations in exosomal pathways within OA synovium. Proteomic profiling revealed distinct molecular signatures in EVPs derived from inflammatory and senescent FLSs, reflecting the pathophysiological status of their parent cells.
View Article and Find Full Text PDFLiver Int
October 2025
Division of Gastroenterology and Hepatology, Department of Medicine, The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research & Cold Spring Harbor Laboratory, Northwell Health, Manhasset, New York, USA.
Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths, primarily due to late-stage diagnosis. In this multicenter study, our goal is to identify functional biomarkers that stratify the risk of HCC in patients with cirrhosis (CP) for early diagnosis.
Methods: Five thousand and eight serum proteins (Somascan) were analysed in Cohort A (477 CP, including 125 HCC).
Microbiol Spectr
September 2025
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
Modulating cell endocytosis activity to reduce host susceptibility to virus represents a promising strategy for antiviral drug development. In this study, we reveal that lactate transporter SLC16A3 is a critical host factor for reducing diverse virus invasion. By performing metabolomics, proteomics, and thermal proteome profiling experiments, AP1G1, a pivotal protein involved in cellular endocytosis, was indiscriminately screened as a chaperone of SLC16A3.
View Article and Find Full Text PDF