Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Development of heterologous systems to produce useful HCV vaccine candidates is an important part of HCV research. In this study different HCV structural region variants were designed to express the first 120 aa, 176 aa, 339 aa, and 650 aa of HCV polyprotein, and aa 384 to 521, or aa 384-605 or aa 384-746 of HCV E2 protein fused to the leader sequence of sucrose invertase 2 allowing the secretion of recombinant E2 proteins. Low expression levels were observed for HCV core protein (HCcAg) variants expressing the first 120 aa and 176 aa (HCcAg.120 and HCcAg.176, respectively). Higher expression levels were observed when HCcAg was expressed as a polypeptide with either E1 or E1 and E2 proteins. In addition, HCcAg was processed to produce two antigenic bands with 21 and 23kDa (P21 and P23, respectively) when expressed as a polypeptide with HCV E1 and E2 proteins. Results also suggest E1 processing in the context of HCcAg.E1.E2 polyprotein. On the other hand, E2.521, E2.605, and E2.680 were efficiently excreted to the culture medium. However, the entire E2.746 variant predominantly localized in the insoluble fraction of ruptured cells. Results suggest that the hydrophobic C-terminal E2 region from aa 681 to 746 is critical for intracellular retention of recombinant E2.746 protein in Pichia pastoris cells. Endo H or PNGase F treatment suggests that E2.746 was modified with high-mannose type oligosaccharides in P. pastoris. These data justify the usefulness of P. pastoris expression system to express HCV structural viral proteins which may be useful targets for HCV vaccine candidates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2006.01.157DOI Listing

Publication Analysis

Top Keywords

hcv
9
pichia pastoris
8
hcv vaccine
8
vaccine candidates
8
hcv structural
8
120 176
8
expression levels
8
levels observed
8
expressed polypeptide
8
proteins
5

Similar Publications

Hepatitis C virus (HCV) exhibits a narrow species tropism, causing robust infections only in humans and experimentally inoculated chimpanzees. While many host factors and restriction factors are known, many more likely remain unknown, which has limited the development of mouse or other small animal models for HCV. One putative restriction factor, the black flying fox orthologue of receptor transporter protein 4 (RTP4), was previously shown to potently inhibit viral genome replication of several ER-replicating RNA viruses.

View Article and Find Full Text PDF

Hepatitis C (HCV) infection is a major global health challenge, with particularly high prevalence among people who inject drugs (PWID) in the Eastern European and Central Asian region (EECA). While the country of Georgia has made major progress in reducing overall HCV prevalence, less is known about HCV reinfection rates and risk factors for reinfection among PWID. In this study, we aimed to: (1) estimate HCV reinfection rates and (2) identify risk factors associated with HCV reinfection among PWID.

View Article and Find Full Text PDF

Introduction: Hepatitis C virus (HCV) infection is a substantial public health concern, particularly among individuals with opioid addiction. The methadone maintenance treatment (MMT) programmes serve as a harm reduction strategy to mitigate HIV disease spread, yet the risk of HCV infection remains high within these settings. Accurate risk prediction for HCV seroconversion is therefore crucial for improving patient outcomes.

View Article and Find Full Text PDF

Diabetes and viral hepatitis, particularly hepatitis B (HBV) and hepatitis C (HCV), are significant global health burdens with complex interconnections. This review discusses the molecular mechanisms linking viral hepatitis to diabetes, focusing on inflammatory pathways, oxidative stress, and epigenetic modifications. Key findings highlight the role of STAT3 in promoting insulin resistance and β-cell apoptosis, the impact of ER stress and NOX-mediated oxidative stress on metabolic dysfunction, and the influence of epigenetic changes such as DNA methylation and histone acetylation on glucose homeostasis.

View Article and Find Full Text PDF