98%
921
2 minutes
20
Human intestinal cell differentiation is mediated by signaling pathways that remain largely undefined. We and others have shown that cell migration and differentiation along the crypt-villus axis is associated with temporal and spatial modulations of the repertoire, as well as with the function of integrins and E-cadherins and their substrates. Cross-talk between integrin and cadherin signaling was previously described and seems to coordinate this differentiation process. Here, we report that engagement of alpha6 and, to a lesser extent, alpha3 integrin subunits after HT-29 cell adhesion on laminin 5 increases the expression of E-cadherin, which then organizes into nascent adherens junctions. We further identify that phosphoinositide 3-kinase (PI 3-kinase) activation plays a key role in this cross-talk. Indeed, integrin-dependent adhesion on laminin 5 stimulates PI 3-kinase activity. Immunofluorescence and immunoprecipitation experiments revealed that activated PI 3-kinase is recruited at cell-cell contacts. Using LY294002, an inhibitor of PI 3-kinase activity, we found that this activation is essential for E-cadherin connection with the cytoskeleton and for biogenesis of adherens junctions. Finally, we demonstrated that PI 3-kinase could signal through Rac1b activation to control adherens junction assembly. Our results provide a mechanistic insight into integrin-cadherin cross-talk and identify a novel role for PI 3-kinase in the establishment of adherens junctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.02698 | DOI Listing |
bioRxiv
August 2025
Department of Biochemistry & Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, 01605.
The LIM domain protein LIMD1 is a critical regulator of the Hippo signaling pathway, acting to sequester the kinases LATS1/2 to adherens junctions (AJs) in response to mechanical strain. Here, we identify the molecular basis for LIMD1 binding and recruitment of LATS1/2 to AJs. We show that while the LIM domains of LIMD1 are sufficient for AJ localization and binding to LATS1/2, recruitment of LATS1 to AJ requires both the intrinsically disordered region (IDR) in the N-terminus as well as the LIM domains.
View Article and Find Full Text PDFUltrason Sonochem
August 2025
Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, Xinjiang, China; Key Laboratory of Processing and Quality and Safety Control of Specialty Agricultural Products (Co-cons
Numerous studies have demonstrated that both lactic acid bacteria (LAB) fermentation and ultrasound-assisted fermentation can enhance the antioxidant activity of fruit juices; however, the effects of these two treatments on metabolites and antioxidant activity in grape juice (GJ) have yet to be investigated. Therefore, this study aimed to analyze the specific effects of LAB fermented grape juice (FGJ) and ultrasound-assisted fermented grape juice (UFGJ) on the antioxidant activity and metabolite production, while also conducting a preliminary investigation into the potential mechanisms underlying the antioxidant action of UFGJ using network pharmacology and molecular docking. The results indicated that UFGJ significantly enhanced the total phenolic content, total flavonoid content, and antioxidant activity of both FGJ and GJ (P < 0.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
Zonula adherens junctions (zAJ) are spatially proximal to tight junctions (TJ), in a superstructure known as the apical junctional complex (AJC). A key component of the AJC is a circumferential ring of filamentous (F)-actin, but how actomyosin contractility drives AJC structure and epithelial barrier function is incompletely understood. Here, we show that a central mechanosensitive component of zAJ, α-catenin (α-cat), undergoes force-dependent phosphorylation in an unstructured linker region.
View Article and Find Full Text PDFCommun Biol
September 2025
University of Münster, Institute of Integrative Cell Biology and Physiology, Münster, Germany.
The formation and maintenance of epithelia is critical for animal development and survival. Central to epithelial integrity are cadherin-based complexes called adherens junctions (AJs), which form physically robust but inherently dynamic cell-cell adhesions. How AJs function at the molecular level remains incompletely understood because techniques to study the central AJ proteins within the dynamic adhesion structure are scarce.
View Article and Find Full Text PDFDevelopment
September 2025
Department of Cell Biology, New York University Grossman School of Medicine, 540 First Avenue, New York, NY 10016, USA.
The Drosophila cell adhesion molecule Sidekick is a key component of tricellular adherens junctions in epithelia, and localizes to specific synaptic layers in the optic lobes. Using mutagenesis of endogenous Sidekick, we showed that its enrichment at apical tricellular junctions and its function in cell rearrangement require its fifth and sixth immunoglobulin domains, but not the first four, although these mediate homophilic adhesion of mammalian Sidekick homologues. The C-terminal PDZ-binding motif of Sidekick contributes to localizing both Sidekick and its intracellular binding partner Canoe to tricellular adherens junctions.
View Article and Find Full Text PDF