A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Salicylate activity. 3. Structure relationship to systemic acquired resistance. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Salicylic acid (2-hydroxybenzoic acid; SA) is a primary signal inducing plant defenses against pathogens. This plant disease resistance, known as systemic acquired resistance (SAR), is an attractive target for the development of new plant protection agents. SAR induction is a multistep process that includes accumulation of pathogenesis-related (PR) proteins. The structure-activity profile of salicylates and related compounds has been evaluated using an inducible PR protein (PR-1a) and plant resistance to tobacco mosaic virus (TMV) as markers. Among the 47 selected monosubstituted and multiple-substituted salicylate derivatives tested, all 8 derivatives that induced more PR-1a protein than SA were fluorinated or chlorinated in the 3- and/or 5-position (3,5-difluorosalicylate > 3-chlorosalicylate > 5-chlorosalicylate > 3,5-dichlorosalicylate > 3-chloro-5-fluorosalicylate > 3-fluorosalicylate > 3-fluoro-5-chlorosalicylate > 3,5-dichloro-6-hydroxysalicylate > SA). In general, substitutions for or on the 2-hydroxyl group or at the 4-position of the ring reduced or eliminated PR-1a protein induction. In contrast, substitutions in positions ortho (3-position) or para (5-position) to the hydroxyl group with electron-withdrawing groups other than chlorine or fluorine decreased induction, and electron-donating groups in these positions also had a deleterious effect on PR-1a induction. PR-1a protein accumulation and reduction in TMV lesion diameter exhibited a log-linear relationship. The seven salicylate derivatives that were the most active TMV resistance inducers were all halogenated in the 3- and/or 5-position (3-chlorosalicylate > 3,5-difluorosalicylate > 3,5-dichloro-6-hydroxysalicylate > 3,5,6-trichlorosalicylate > 5-chlorosalicylate > 5-fluorosalicylate > 3,5-dichlorosalicylate > 4-fluorosalicylate > 3-fluorosalicylate > 3-chloro-5-fluorosalicylate > 4-chlorosalicylate > SA). The correlation between PR-1a protein induction and resistance to TMV confirms the value of using PR-1a induction as a screening tool for developing new plant disease control agents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf051383tDOI Listing

Publication Analysis

Top Keywords

pr-1a protein
16
systemic acquired
8
acquired resistance
8
plant disease
8
salicylate derivatives
8
and/or 5-position
8
protein induction
8
pr-1a induction
8
pr-1a
7
resistance
6

Similar Publications