Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Post genomic biotechnologies, such as transcriptome analysis, are now efficient enough to characterize the full complement of genes involved in the expression of specific biological functions. One of them is the Serial Analysis of Gene Expression (SAGE) technique. SAGE involves the construction of transcript libraries for a quantitative analysis of the entire set of genes expressed or inactivated at particular stages of cellular activation. Bioinformatic comparisons in hosts and pathogens genomic databases allow the identification of several up- and down-regulated genes, ESTs and unknown transcripts directly involved in the host-pathogen immunological interaction mechanisms. Based on the first results obtained during an experimental Trypanosoma congolense infection in trypanotolerant cattle, the efficiency and limits of such a technique, from the data acquisition level to the data analysis level, is discussed in this analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetimm.2005.08.005 | DOI Listing |