98%
921
2 minutes
20
The P-glycoprotein (P-gp) is thought to be involved in the regulation of volume-sensitive chloride channels. In this study, the possible coupling between P-gp and swelling-activated chloride channels has been examined in MCF7 cells with sensitive (MDR-), resistant (MDR+), and reversed resistant (MDR(REV)) phenotypes. Western blot analysis showed that incubation of cells with doxorubicin induced P-gp expression in a reversible manner. Exposure of MDR+ cells to hypotonicity resulted in an inhibition of P-gp activity while hypotonic challenges induced swelling-activated chloride currents (I(Cl-swell)) in MDR-, MDR+, and MDR(REV) MCF7 cells. While verapamil inhibited I(Cl-swell) in all cell types, doxorubicin and vincristine rapidly and reversibly inhibited I(Cl-swell) uniquely in MDR+. Intracellular dialysis of MDR+ cells with C219 anti-P-gp antibody abolished the sensitivity of I(Cl-swell) to doxorubicin and led to a response pattern very close to that of MDR- cells. Taken together, these results strongly suggest that the P-glycoprotein regulates I(Cl-swell) in resistant MCF7.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2005.07.010 | DOI Listing |
Adv Sci (Weinh)
September 2025
Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong, 999077,
Breast cancer (BC), characterized by its heterogeneity and diverse subtypes, necessitates personalized treatment strategies. This study presents MF3Ec-TBPP nanoparticles (NPs) as a promising approach, integrating an aggregation-induced emission (AIE)-based photosensitizer, TBPP, with the MF3Ec aptamer to enhance targeted photodynamic therapy (PDT) for Luminal A subtype BC cells. The nanoparticles also feature a 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) shell and dipalmitoyl phosphatidylcholine (DPPC), which stabilize the structure and inhibit singlet oxygen generation, effectively reducing off-target effects and protecting healthy tissues.
View Article and Find Full Text PDFMed Oncol
September 2025
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.
View Article and Find Full Text PDFLab Chip
September 2025
Institute of Integrated Research, Institute of Science Tokyo, R2-9, 4259 Nagatsuta-cho, Midoriku, Yokohama, Kanagawa 226-8501, Japan.
Tunability in isolating target cells of varying sizes from complex heterogeneous samples is essential for biomedical research and diagnostics. However, conventional deterministic lateral displacement (DLD) systems lack flexibility due to their fixed critical diameters (). Here, we present a thermo-responsive DLD micropillar array that enables tunable cell separation by dynamically modulating through temperature control.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Purpose: Tumor hypoxia is a key barrier to successful delivery and activity of anti-cancer agents. To tackle this, we designed hypoxia-responsive Au-PEI-Azo-mPEG nanoparticles (NPs) denoted as APAP NPs for targeted delivery of hypoxia-activated prodrug (HAP), tirapazamine (TPZ) to hypoxic breast cancer cells.
Methods: AuNPs were first synthesized.
PLoS One
September 2025
Department of Zoology, Baba Guru Nanak University, Nankana Sahib, Pakistan.
Secreted frizzled-related protein 4 (sFRP4) plays a fundamental role in the regulation of Wnt signalling, which is crucial for cellular proliferation and differentiation. The sFRP4 has garnered significant interest as a therapeutic target for metabolic diseases and cancer due to its mechanism of action. Although existing sFRP4 modulators show limited specificity and notable off-target effects, our study explores the potential of known bioactive compounds as more selective and less toxic alternatives.
View Article and Find Full Text PDF