Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In primary cultures of rat hepatocytes, exposure to arsenite causes a major decrease in dexamethasone (DEX)-mediated induction of CYP3A23 hemoprotein, with a minor decrease in CYP3A23 mRNA. Here we show that addition of heme did not prevent the arsenite-mediated decreases in CYP3A23 protein, and arsenite did not decrease intracellular glutathione levels, indicating that heme and glutathione were not limiting for formation of holoCYP3A23. We also investigated whether arsenite decreases CYP3A23 protein by increasing CYP3A23 degradation by the calpain pathway. The calpain inhibitor, calpeptin, caused greater than a 90% inhibition of calpain-mediated proteolysis, but had no effect on DEX-mediated induction of CYP3A23 protein following 24h treatments. However, calpeptin enhanced the effect of arsenite to decrease induction of CYP3A23 protein. In addition, in short-term studies, calpeptin appeared to be a suicidal inhibitor of CYP3A-catalyzed enzyme activity. Our findings suggest that CYP3A23 protein is not degraded by calpain-mediated proteolysis, even in the presence of arsenite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2005.05.194 | DOI Listing |