Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The single-stranded DNA-binding protein replication protein A (RPA) interacts with several human RecQ DNA helicases that have important roles in maintaining genomic stability; however, the mechanism for RPA stimulation of DNA unwinding is not well understood. To map regions of Werner syndrome helicase (WRN) that interact with RPA, yeast two-hybrid studies, WRN affinity pull-down experiments and enzyme-linked immunosorbent assays with purified recombinant WRN protein fragments were performed. The results indicated that WRN has two RPA binding sites, a high affinity N-terminal site, and a lower affinity C-terminal site. Based on results from mapping studies, we sought to determine if the WRN N-terminal region harboring the high affinity RPA interaction site was important for RPA stimulation of WRN helicase activity. To accomplish this, we tested a catalytically active WRN helicase domain fragment (WRN(H-R)) that lacked the N-terminal RPA interaction site for its ability to unwind long DNA duplex substrates, which the wild-type enzyme can efficiently unwind only in the presence of RPA. WRN(H-R) helicase activity was significantly reduced on RPA-dependent partial duplex substrates compared with full-length WRN despite the presence of RPA. These results clearly demonstrate that, although WRN(H-R) had comparable helicase activity to full-length WRN on short duplex substrates, its ability to unwind RPA-dependent WRN helicase substrates was significantly impaired. Similarly, a Bloom syndrome helicase (BLM) domain fragment, BLM(642-1290), that lacked its N-terminal RPA interaction site also unwound short DNA duplex substrates similar to wild-type BLM, but was severely compromised in its ability to unwind long DNA substrates that full-length BLM helicase could unwind in the presence of RPA. These results suggest that the physical interaction between RPA and WRN or BLM helicases plays an important role in the mechanism for RPA stimulation of helicase-catalyzed DNA unwinding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M500653200 | DOI Listing |