Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Zebrafish is an excellent model organism for studying vertebrate development and human disease. With the availability of increased numbers of zebrafish mutants and microarray chips, gene expression profiling has become a powerful tool for identification of downstream target genes perturbed by a specific mutation. One of the obstacles often encountered, however, is to isolate large numbers of zebrafish mutant embryos that are indistinguishable in morphology from the wild-type siblings for microarray analysis. Here, we report a method using amplified cDNA derived from five embryos for gene expression profiling of the 18-somite zebrafish cloche (clo) mutant, in which development of hematopoietic and endothelial lineages is severely impaired. In total, 31 differentially expressed target genes are identified, of which 13 have not been reported previously. We further determine that of these 13 new targets, 8 genes, including coproporphyrinogen oxidase (cpo), carbonic anhydrase (cahz), claudin g (cldn g), zinc-finger-like gene 2 (znfl2), neutrophil cytosol factor 1 (ncf1), matrix metalloproteinase 13 (mmp13), dual specificity phosphatase 5 (dusp5), and a novel gene referred as zebrafish vessel-specific gene 1 (zvsg1) are predominantly expressed in hematopoietic and endothelial cells. Comparative analysis demonstrates that this method is comparable and complementary to that of the conventional approach using unamplified sample. Our study provides valuable information for studying hematopoiesis and vessel formation. The method described here offers a powerful tool for gene expression profiling of zebrafish mutants in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.20444 | DOI Listing |