98%
921
2 minutes
20
Objective: To determine the role of reconstructing three-dimensional magnetic source imaging (MSI) data on cortical resections for children undergoing epilepsy surgery using neuronavigation.
Methods: Magnetoencephalographic recordings were analyzed in 16 children under 18 years of age with intractable epilepsy. The data were transferred to the neuronavigation workstation for intraoperative localization of MSI spike sources in selected patients. With the aid of neuronavigation, the MSI spike sources were resected. Intraoperative electrocorticography was then used to survey the surrounding field for residual epileptiform activity.
Results: MSI spike sources were obtained in 13 of 16 patients. MSI spike sources localized the cortical and subcortical discharges before intraoperative electrocorticography in nine patients and before extraoperative subdural grid electroencephalographic monitoring in four patients. The localization of MSI spikes sources was characterized by clustered spike sources in 10 patients. By use of neuronavigation, the clustered spike sources were correlated to the interictal zone indicated by intraoperative electrocorticography in six patients and to the ictal onset zone shown on extraoperative subdural grid electroencephalography in three patients. Cortical excision of the spike cluster focus was then performed in these six patients. The technique used here to resect MSI spike source clusters that correlate with the ictal onset zone by invasive subdural grid monitoring is illustrated in one patient who underwent cortical resection for epilepsy surgery.
Conclusion: Three-dimensional reconstruction of MSI data linked to neuronavigation is a promising technique to facilitate resections around eloquent cortex in children with epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1227/01.neu.0000140992.67186.08 | DOI Listing |
PEC Innov
December 2025
Institute for General Practice and Palliative Care, Hannover Medical School, Germany.
Background: In healthcare education, virtual reality (VR), simulating real-world situations, is emerging as a tool to improve communication skills, particularly in sensitive scenarios involving patients and caregivers. While promising, VR-based education also poses challenges such as avatar realism, cognitive load, and the need for pedagogical grounding.
Objective: This protocol paper presents the VR-TALKS project, which aims to develop, apply, and evaluate VR scenarios designed to teach healthcare students communication skills in serious illness scenarios.
Nat Commun
September 2025
Computational Science and Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
Biological nervous systems constitute important sources of inspiration towards computers that are faster, cheaper, and more energy efficient. Neuromorphic disciplines view the brain as a coevolved system, simultaneously optimizing the hardware and the algorithms running on it. There are clear efficiency gains when bringing the computations into a physical substrate, but we presently lack theories to guide efficient implementations.
View Article and Find Full Text PDFEpilepsy Behav
September 2025
Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada. Electronic address:
Objective: Electronic health records offer the opportunity for quality-improvement (QI) initiatives addressing health disparities in epilepsy care. The Pediatric Epilepsy Outcome-Informatics Project (PEOIP) at Alberta Children's Hospital implemented point-of-care data entry into a standardized pediatric epilepsy electronic note as part of routine clinical care to support QI initiatives. Our study validated collected data by assessing the prevalence of patient characteristics, ethno-racial background, and 4 of the most common severe epilepsy syndromes: infantile epileptic spasms, Dravet, Lennox-Gastaut, and developmental epileptic encephalopathy with spike-wave action in sleep.
View Article and Find Full Text PDFThe evolutionary dynamics of seasonal influenza A viruses (IAVs) have been well characterized at the population level, with antigenic drift known to be a major force in driving strain turnover. The evolution of IAV populations at the within-host level, however, is still less well characterized. Improving our understanding of within-host IAV evolution has the potential to shed light on the source of new strains, including new antigenic variants, at the population level.
View Article and Find Full Text PDFCirc Res
September 2025
Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville. (H.Y., M.Y., D.M., F.X., J.P.S., S.C., L.F.A., S.M., R.A.G., M.L.S.S.-L.).
Background: Juxtaglomerular cells are sensors that control blood pressure and fluid-electrolyte homeostasis. They are arranged as clusters at the tip of each afferent arteriole. In response to decreased blood pressure or extracellular fluid volume, juxtaglomerular cells secrete renin, initiating an enzymatic cascade that culminates in the production of Ang II (angiotensin II), a potent vasoconstrictor that restores blood pressure and fluid-electrolyte homeostasis.
View Article and Find Full Text PDF