98%
921
2 minutes
20
This study was designed 1) to examine the effects of blood-brain barrier (BBB) permeability [quantified as permeability-surface area product (PS)], unbound fraction in plasma (f(u,plasma)), and brain tissue (f(u,brain)) on the time to reach equilibrium between brain and plasma and 2) to investigate the drug discovery strategies to design and select compounds that can rapidly penetrate the BBB and distribute to the site of action. The pharmacokinetics of seven model compounds: caffeine, CP-141938 [methoxy-3-[(2-phenyl-piperadinyl-3-amino)-methyl]-phenyl-N-methyl-methane-sulfonamide], fluoxetine, NFPS [N[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine], propranolol, theobromine, and theophylline in rat brain and plasma after subcutaneous administration were studied. The in vivo log PS and log f(u,brain) calculated using a physiologically based pharmacokinetic model correlates with in situ log PS (R(2) = 0.83) and in vitro log f(u,brain) (R(2) = 0.69), where the in situ PS and in vitro f(u,brain) was determined using in situ brain perfusion and equilibrium dialysis using brain homogenate, respectively. The time to achieve brain equilibrium can be quantitated with a proposed parameter, intrinsic brain equilibrium half-life [t(1/2eq,in) = V(b)ln2/(PS . f(u,brain))], where V(b) is the physiological volume of brain. The in vivo log t(1/2eq,in) does not correlate with in situ log PS (R(2) < 0.01) but correlates inversely with log(PS . f(u,brain)) (R(2) = 0.85). The present study demonstrates that rapid brain equilibration requires a combination of high BBB permeability and low brain tissue binding. A high BBB permeability alone cannot guarantee a rapid equilibration. The strategy to select compounds with rapid brain equilibration in drug discovery should identify compounds with high BBB permeability and low nonspecific binding in brain tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.104.079319 | DOI Listing |
Sci Adv
September 2025
School of Electrical and Electronic Engineering, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Brain-computer interfaces (BCIs) enable direct communication between the brain and computers. However, their long-term functionality remains limited due to signal degradation caused by acute insertion trauma, chronic foreign body reaction (FBR), and biofouling at the device-tissue interface. To address these challenges, we introduce a multifunctional surface modification strategy called targeting-specific interaction and blocking nonspecific adhesion (TAB) coating for flexible fiber, achieving a synergistic integration of mechanical compliance and biochemical stability.
View Article and Find Full Text PDFSci Transl Med
September 2025
Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are essential for the formation of myelin sheaths and pivotal for maintaining axonal integrity and conduction. Disruption of these cells and the myelin sheaths they produce is a hallmark of demyelinating conditions like multiple sclerosis or those resulting from certain drug side effects, leading to profound neurological impairments. In this study, we created a human brain organoid comprising neurons, astrocytes, and myelinating oligodendrocytes.
View Article and Find Full Text PDFPhys Eng Sci Med
September 2025
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia.
This study introduces a novel optimization framework for cranial three-dimensional rotational angiography (3DRA), combining the development of a brain equivalent in-house phantom with Figure of Merit (FOM) a quantitative evaluation method. The technical contribution involves the development of an in-house phantom constructed using iodine-infused epoxy and lycal resins, validated against clinical Hounsfield Units (HU). A customized head phantom was developed to simulate brain tissue and cranial vasculature for 3DRA optimization.
View Article and Find Full Text PDFArch Toxicol
September 2025
Department of Toxicology, Faculty of Medicine, Collegium Medicum, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959, Rzeszow, Poland.
ACP-105 (CAS: 1048998-11-3) is a novel non-steroidal selective androgen receptor modulator (SARM), increasingly detected in anti-doping analyses, yet lacking a comprehensive ADME profile. This study provides the first integrative in silico characterization of ACP-105's ADME properties using seven independent methods (ADMETlab 3.0, ADMET Predictor 12.
View Article and Find Full Text PDFPsychopharmacology (Berl)
September 2025
Institute of Cardiovascular Research, Sleep Medical Center, Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
Rationale: Genome-wide association studies (GWASs) are used to identify genetic variants for association with schizophrenia (SCZ) risk; however, each GWAS can only reveal a small fraction of this association.
Objectives: This study systematically analyzed multiple GWAS data sets to identify gene subnetwork and pathways associated with SCZ.
Methods: We identified gene subnetwork using dmGWAS program by combining SCZ GWASs and a human interaction network, performed gene-set analysis to test the association of gene subnetwork with clinical symptom scores and disease state, meanwhile, conducted spatiotemporal and tissue-specific expression patterns and cell-type-specific analysis of genes in the subnetwork.