Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The steady-state free precessing (SSFP) sequences, widely used in MRI today, acquire data only during a short fraction of the repetition time (TR). Thus, they exhibit a poor scan efficiency. In this paper, a novel approach to extending the acquisition window for a given TR without considerably modifying the basic sequence is explored for radial SSFP sequences. The additional data are primarily employed to increase the signal-to-noise ratio, rather than to improve the temporal resolution of the imaging. The approach is analyzed regarding its effect on the image SNR (signal to noise ratio) and the reconstruction algorithm. Results are presented for phantom experiments and cardiac functions studies. The gain in SNR is most notable in rapid imaging, since SNR enhancement for a constant repetition time may be used to compensate for the increase in noise resulting from angular undersampling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/tmi.2004.840845 | DOI Listing |