Transcriptional profiling and assessment of cell lines as in vitro models for mantle cell lymphoma.

Leuk Res

Department of Immunotechnology, Lund University, P.O. Box 7031, SE-22007 Lund, Sweden.

Published: February 2005


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mantle cell lymphoma (MCL) is an aggressive malignancy and new treatment modalities must be established to increase patient survival time. In the search for new therapeutic targets, reliable and well-characterised in vitro models are essential. In this study, we have characterised three MCL cell lines (SP53, Granta 519 and NCEB1) in comparison with primary tumours from MCL, follicular lymphomas (FL), a FL cell line (RL), a Burkitt lymphoma cell line (RAJI) and five different B cell populations from healthy individuals. Expression profiling was used to determine the relative expression of >12000 transcripts in these samples, and flow cytometry analysis was performed to establish a phenotypic signature for each of the cell lines. In addition, the cell lines were sequenced, and the frequency of somatic mutations and immunoglobulin (Ig) variable heavy chain (VH) usage were determined. We show by hierarchical clustering that the cell lines retain a genetic signature similar to primary MCL, which readily separated the MCL samples from the other lymphoma cell lines and the FL tumours. Furthermore, the MCL cell lines showed differences in the frequency of VH somatic mutations (0-2.1%). The increased number of mutations in NCEB1, compared to the other MCL cell lines, was in agreement with a decreased expression of CD31, CD44, CXCR5, CCR7 and CCR6. Taken together, our data show that the cell lines are clearly derived from MCL tumours and expressed similar genetic and phenotypic signatures compared to primary tumours, which confirmed their usefulness as in vitro models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.leukres.2004.06.009DOI Listing

Publication Analysis

Top Keywords

cell lines
36
cell
14
vitro models
12
mcl cell
12
lines
9
mantle cell
8
cell lymphoma
8
mcl
8
primary tumours
8
tumours mcl
8

Similar Publications

IGLV3-21-directed bispecific antibodies activate T cells and promote killing in a high-risk subset of chronic lymphocytic leukemia.

Haematologica

September 2025

Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel.

We previously used a disease-specific B cell receptor (BCR) point mutation (IGLV3-21R110) for selective targeting of a high-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. Since CLL is a disease of the elderly and a significant fraction of patients is not able to physically tolerate CAR T cell treatment, we explored bispecific antibodies as an alternative for precision targeting of this tumor mutation. Heterodimeric IgG1-based antibodies consisting of a fragment crystallizable region (Fc) attached to both an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single chain variable fragment (R110-bsAb) selectively killed cell lines engineered to express high levels of the neoepitope as well as primary CLL cells using healthy donor and CLL patient-derived T cells as effectors.

View Article and Find Full Text PDF

Activated B-cell diffuse large B-cell lymphoma (ABC-DLBCL) is an aggressive cancer with poor response to standard chemotherapy. In search of new therapeutic leads, a library of 435 fractions prepared from the Irish marine biorepository was screened against 2 ABC-DLBCL cell lines (TMD8 and OCI-Ly10) and a non-cancerous control cell line (CB33). Active fractions are prioritized based on potency and selectivity.

View Article and Find Full Text PDF

The Transcription Factor MYB8 Positively Regulates Flavonoid Biosynthesis of Scutellaria baicalensis in Response to Drought Stress.

Plant Cell Environ

September 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.

Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis.

View Article and Find Full Text PDF

This study investigates the synthesis of aromatic nitriles using an evolved variant of OxdF1 (L318F/F306Y), an aldoxime dehydratase from Pseudomonas putida F1, engineered for improved catalytic efficiency toward benzaldehyde oxime. The double OxdF1 (L318F/F306Y) mutant effectively catalyzes the conversion of various benzaldoxime derivatives to the corresponding nitriles. Due to the enzyme's inherent instability, immobilized whole-cell systems are employed in a flow reactor to improve its stability and broaden its applicability, with the biotransformation of benzaldehyde oxime and 2,6-difluorobenzaldehyde oxime serving as case studies.

View Article and Find Full Text PDF

Background And Aims: Cholangiopathies, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and post-COVID-19 cholangiopathy (PCC), involve chronic cholangiocyte injury, senescence, epithelial-stromal crosstalk, and progressive fibrosis. However, effective in vitro models to capture these interactions are limited. Here, we present a scaffold-free 3D multilineage spheroid model, composed of hepatocyte-like cells (HepG2), cholangiocytes (H69), and hepatic stellate cells (LX-2), designed to recapitulate early fibrogenic responses driven by senescent cholangiocytes.

View Article and Find Full Text PDF