Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Normal blood-cell differentiation is controlled by regulated gene expression and signal transduction. Transcription deregulation due to chromosomal translocation is a common theme in hematopoietic neoplasms. AML1-ETO, which is a fusion protein generated by the 8;21 translocation that is commonly associated with the development of acute myeloid leukemia, fuses the AML1 runx family DNA-binding transcription factor to the ETO corepressor that associates with histone deacetylase complexes. Analyses have demonstrated that AML1-ETO blocks AML1 function and requires additional mutagenic events to promote leukemia. Here, we report that the loss of the molecular events of AML1-ETO C-terminal NCoR/SMRT-interacting domain transforms AML1-ETO into a potent leukemogenic protein. Contrary to full-length AML1-ETO, the truncated form promotes in vitro growth and does not obstruct the cell-cycle machinery. These observations suggest a previously uncharacterized mechanism of tumorigenesis, in which secondary mutation(s) in molecular events disrupting the function of a domain of the oncogene promote the development of malignancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC535382 | PMC |
http://dx.doi.org/10.1073/pnas.0406702101 | DOI Listing |