Experimental and computational validation of BDTPS using a heterogeneous boron phantom.

Appl Radiat Isot

CERN, PH/SFT, J00200, CH-1211, Geneva 23, Switzerland.

Published: November 2004


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The idea to couple the treatment planning system (TPS) to the information on the real boron distribution in the patient acquired by positron emission tomography (PET) is the main added value of the new methodology set-up at DIMNP (Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione) of University of Pisa, in collaboration with the JRC (Joint Research Centre) at Petten (NL). This methodology has been implemented in a new TPS, called Boron Distribution Treatment Planning System (BDTPS), which takes into account the actual boron distribution in the patient's organ, as opposed to other TPSs used in BNCT that assume an ideal uniform boron distribution. BDTPS is based on the Monte Carlo technique and has been experimentally validated comparing the computed main parameters (thermal neutron flux, boron dose, etc.) to those measured during the irradiation of an ad hoc designed phantom (HEterogeneous BOron phantoM, HEBOM). The results are also in good agreement with those obtained by the standard TPS SERA and by reference calculations carried out using an analytical model with the MCNP code. In this paper, the methodology followed for both the experimental and the computational validation of BDTPS is described.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2004.05.055DOI Listing

Publication Analysis

Top Keywords

boron distribution
16
experimental computational
8
computational validation
8
validation bdtps
8
heterogeneous boron
8
boron phantom
8
treatment planning
8
planning system
8
boron
7
bdtps
4

Similar Publications

Selenium and boron can alleviate lead (Pb) toxicity in plants, but their stress resistance mechanisms in tobacco remain unclear. The aim of this study was to investigate the effects of Se/B application on lead-induced oxidative stress, subcellular distribution, cell wall properties, and Pb accumulation. Additionally, a comprehensive analysis of transcriptomics and metabolomics data was conducted.

View Article and Find Full Text PDF

For the first time, we examined the catalytic performance of a NiB/SiO catalyst with 10 wt % NiB in model hydrodesulfurization of 4,6-dimethyldibenzothiophene (4,6-DMDBT) also together with a competing nitrogen compound, that is, carbazole. The NiB/SiO catalyst (fresh, reduced, and spent) was characterized using the following techniques: N sorption, ICP, XRD, CO chemisorption, XPS, and elemental analysis. The results of XRD, XPS, and elemental analysis indicated the partial decomposition of the NiB phase into metallic nickel (accompanied by boron atoms) and partial sulfidation into NiS species under reaction conditions.

View Article and Find Full Text PDF

With the rapid advancement of space technologies, ensuring the reliable performance of electronic systems in extreme space environments has become increasingly critical. However, conventional polymeric materials used in electronic device packaging suffer from insufficient neutron shielding capability and poor thermal stability, requiring improved effectiveness in protecting sensitive components from high-energy radiation and drastic temperature fluctuations. In this study, we report a novel multilayered composite consisting of boron nitride microbridle (BNMR) and epoxy resin.

View Article and Find Full Text PDF

Understanding reactive mass transport in redox flow reactors is key to improving performance, yet conventional characterization techniques often rely on cell-averaged metrics and fail to resolve local transport phenomena. In this study, we employ neutron radiography to visualize concentration distributions in redox flow cells with non-aqueous electrolytes, leveraging the high attenuation of hydrogen-containing organic molecules and boron-containing supporting ions. Symmetric flow cell experiments were conducted with three electrode types (paper, cloth, and a hierarchical porous electrode fabricated by non-solvent induced phase separation), and two flow field designs (parallel and interdigitated).

View Article and Find Full Text PDF

Some reports indicated the association of rs17602729 and rs34526199 functional polymorphisms of the gene encoding adenosine monophosphate deaminase 1 (AMPD1) with the risk of coronary artery disease (CAD) and/or its intermediate phenotype. Therefore, the aim of our study was to analyze the association of both polymorphisms with the predisposition to disease and both clinical and biochemical phenotypes but solely in diabetic individuals with CAD. The study group consisted of 196 adult diabetic individuals with CAD, and the control group comprised 200 healthy newborns.

View Article and Find Full Text PDF