A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Competition and natural selection in a mathematical model of cancer. | LitMetric

Competition and natural selection in a mathematical model of cancer.

Bull Math Biol

Department of Biology, Scottsdale Community College, 9000 E. Chaparral Road, Scottsdale, AZ 85256-2626, USA.

Published: July 2004


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A malignant tumor is a dynamic amalgamation of various cell phenotypes, both cancerous (parenchyma) and healthy (stroma). These diverse cells compete over resources as well as cooperate to maintain tumor viability. Therefore, tumors are both an ecological community and an integrated tissue. An understanding of how natural selection operates in this unique ecological context should expose unappreciated vulnerabilities shared by all cancers. In this study I address natural selection's role in tumor evolution by developing and exploring a mathematical model of a heterogenous primary neoplasm. The model is a system of nonlinear ordinary differential equations tracking the mass of up to two different parenchyma cell types, the mass of vascular endothelial cells from which new tumor blood vessels are built and the total length of tumor microvessels. Results predict the possibility of a hypertumor-a focus of aggressively reproducing parenchyma cells that invade and destroy part or all of the tumor, perhaps before it becomes a clinical entity. If this phenomenon occurs, then we should see examples of tumors that develop an aggressive histology but are paradoxically prone to extinction. Neuroblastoma, a common childhood cancer, may sometimes fit this pattern. In addition, this model suggests that parenchyma cell diversity can be maintained by a tissue-like integration of cells specialized to provide different services.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bulm.2003.10.001DOI Listing

Publication Analysis

Top Keywords

natural selection
8
mathematical model
8
parenchyma cell
8
tumor
6
competition natural
4
selection mathematical
4
model
4
model cancer
4
cancer malignant
4
malignant tumor
4

Similar Publications