98%
921
2 minutes
20
Unexpected drug activities discovered during clinical testing establish the need for better characterization of compounds in human disease-relevant conditions early in the discovery process. Here, we describe an approach to characterize drug function based on statistical analysis of protein expression datasets from multiple primary human cell-based models of inflammatory disease. This approach, termed Biologically Multiplexed Activity Profiling (BioMAP), provides rapid characterization of drug function, including mechanism of action, secondary or off-target activities, and insights into clinical phenomena. Using three model systems containing primary human endothelial cells and peripheral blood mononuclear cells in different environments relevant to vascular inflammation and immune activation, we show that BioMAP profiles detect and discriminate multiple functional drug classes, including glucocorticoids; TNF-alpha antagonists; and inhibitors of HMG-CoA reductase, calcineurin, IMPDH, PDE4, PI-3 kinase, hsp90, and p38 MAPK, among others. The ability of cholesterol lowering HMG-CoA reductase inhibitors (statins) to improve outcomes in rheumatic disease patients correlates with the activities of these compounds in our BioMAP assays. In addition, the activity profiles identified for the immunosuppressants mycophenolic acid, cyclosporin A, and FK-506 provide a potential explanation for a reduced incidence of posttransplant cardiovascular disease in patients receiving mycophenolic acid. BioMAP profiling can allow integration of meaningful human biology into drug development programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.04-1538fje | DOI Listing |
Nephrol Dial Transplant
September 2025
Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.
Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.
Cell Mol Biol (Noisy-le-grand)
September 2025
Arencibia Clinic, San Sebastian, Spain.
Follicular unit extraction (FUE) has become a leading technique in hair transplantation, yet optimal management of the donor area remains a clinical challenge. This systematic review analyzes intraoperative and postoperative interventions applied to the donor area in FUE hair transplantation, with a focus on both clinical outcomes and the cellular and molecular mechanisms involved in tissue repair, inflammatory response, and regenerative processes. A comprehensive literature search was conducted in PubMed and EMBASE (January 2000-June 2025), identifying clinical studies that evaluated donor area treatments and reported outcomes related to healing, inflammation, infection, and patient satisfaction.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev
Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.
View Article and Find Full Text PDFFront Mol Neurosci
August 2025
Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, United States.
Introduction: Endothelial-to-mesenchymal transition (EndoMT), cell death, and fibrosis are increasingly recognized as contributing factors to Alzheimer's disease (AD) pathology, but the underlying transcriptomic mechanisms remain poorly defined. This study aims to elucidate transcriptomic changes associated with EndoMT, diverse cell death pathways, and fibrosis in AD using the 3xTg-AD mouse model.
Methods: Using RNA-seq data and knowledge-based transcriptomic analysis on brain tissues from the 3xTg-AD mouse model of AD.
Clin Interv Aging
September 2025
Gravitational Physiology and Medicine Research Unit, Division of Physiology and Pathophysiology, Otto Löwi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria.
Purpose: The development of home-based clinical interventions and healthcare supported by digital tools has rapidly advanced in recent years, promising improvements in preventive and personalized treatment, especially for aging chronic patients. However, many systems are launched without feedback from healthcare experts, essential for understanding their strengths, limitations, and areas for improvement. This study had two objectives: first, to gather expert opinions on the qualities and limitations of current home-centred healthcare trends for aging patients; second, as a case study, to obtain feedback on a novel system, (TI-Health), integrating these trends.
View Article and Find Full Text PDF