Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An extensive characterization of fetal mouse brain cell aggregates has been performed using immunohistochemical and stereological methods. Single cell suspensions from mechanically dissociated cortex and hippocampus were cultured in serum-free, B27-supplemented medium under constant gyratory agitation for up to 56 days. Three-dimensional aggregates started to form immediately after seeding and reached a final average size of 500 microm in diameter. Among the cell types identified, neurons were the most abundant cells in the aggregates, followed by astrocytes, microglia, and oligodendrocytes. Western blotting for synaptophysin and immunostaining for neurotransmitter-related molecules indicated the presence of well-defined phenotypic characteristics of the neurons in this culture system, suggesting functionality. Proliferating cells, many with neural precursor cell properties, were seen throughout the culture period and could be isolated from the aggregates even after 2 months in culture. Neural precursor cells were isolated from the aggregates after more than 1 month in culture; these cells were successfully differentiated into neurons, astrocytes, and oligodendrocytes. The aggregate culture system may provide a versatile tool for molecular dissection of processes identified in mouse models, including transgenic animals and manipulation of neural precursor cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.20153DOI Listing

Publication Analysis

Top Keywords

neural precursor
16
precursor cells
12
mouse brain
8
culture system
8
isolated aggregates
8
cells
6
aggregates
5
culture
5
characterization long-term
4
long-term mouse
4

Similar Publications

Dual Role of DLK1 in GnRH Neuron Ontogeny.

Stem Cell Rev Rep

September 2025

Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.

Mutations in Delta Like Non-Canonical Notch Ligand 1 (DLK1), a paternally expressed imprinted gene, underlie central precocious puberty (CPP), yet the mechanism remains unclear. To test the hypothesis that DLK1 plays a role in gonadotropin releasing hormone (GnRH) neuron ontogeny, 75 base pairs were deleted in both alleles of DLK1 exon 3 with CRISPR-Cas9 in human pluripotent stem cells (hPSCs). This line, exhibiting More than 80% loss of DLK1 protein, was differentiated into GnRH neurons by dual SMAD inhibition (dSMADi), FGF8 treatment and Notch inhibition, as previously described, however, it did not exhibit accelerated GNRH1 expression.

View Article and Find Full Text PDF

Accurately modeling the binding free energies associated with molecular cluster formation is critical for understanding atmospheric new particle formation. Conventional quantum-chemistry methods, however, often struggle to describe thermodynamic contributions, particularly in systems exhibiting significant anharmonicity and configurational complexity. We employed umbrella sampling, an enhanced-sampling molecular dynamics technique, to compute Gibbs binding free energies for clusters formed from a diverse set of new particle formation precursors, including sulfuric acid, ammonia, dimethylamine, and water.

View Article and Find Full Text PDF

Psychotic-like experiences (PLEs) -subclinical experiences or symptoms that resemble psychosis, such as hallucinations and delusional thoughts-often emerge during adolescence and are predictive of serious psychopathology. Understanding PLEs during adolescence is crucial due to co-occurring developmental changes in neural reward systems that heighten the risk for psychotic-related and affective psychopathology, especially in those with a family history of severe mental illness (SMI). We examined associations among PLEs, clinical symptoms, and neural reward function during this critical developmental period.

View Article and Find Full Text PDF

The neuroscience of brain cancers.

Neuron

September 2025

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. Electronic address:

In the central nervous system (CNS), where neuronal activity promotes brain development and plasticity, including glial precursor cell proliferation, the activity of neurons robustly drives the initiation, growth, invasion, treatment resistance, and progression of brain cancers such as adult and pediatric hemispheric high-grade gliomas, diffuse midline gliomas such as diffuse intrinsic pontine glioma (DIPG), and pediatric low-grade optic gliomas. The underlying mechanisms involve both neuronal-activity-regulated paracrine signaling and direct electrochemical communication through neuron-to-glioma synapses. Neuronal inputs to tumors can then be propagated through connections between cancer cells.

View Article and Find Full Text PDF

Maternal low thyroxine (T4) serum levels during the first trimester of pregnancy correlate with cerebral cortex volume and mental development of the progeny, but why neural cells during early fetal brain development are vulnerable to maternal T4 levels remains unknown. In this study, using iPSCs obtained from a boy with a loss-of-function mutation in MCT8-a transporter previously identified as critical for thyroid hormone uptake and action in neural cells-we demonstrate that thyroid hormones induce transcriptional changes that promote the progression of human neural precursor cells along the dorsal projection trajectory. Consistent with these findings, single-cell, spatial, and bulk transcriptomics from MCT8-deficient cerebral organoids and cultures of human neural precursor cells underscore the necessity for optimal thyroid hormone levels for these cells to differentiate into neurons.

View Article and Find Full Text PDF