98%
921
2 minutes
20
The developing prefrontal cortex receives a dense serotonergic innervation, yet little is known about the actions of serotonin [5-Hydroxytryptamine (5-HT)] in this region during development. Here, we examined the developmental regulation of 5-HT receptors controlling the excitability of pyramidal neurons of this region. Using whole-cell recordings in in vitro brain slices, we identified a dramatic shift in the effects of 5-HT on membrane potential during the postnatal developmental period. In slices derived from young animals [postnatal day (P) 6 to P19], administration of 5-HT elicits a robust depolarization of layer V pyramidal neurons, which gradually shifts to a hyperpolarization commencing during the third postnatal week. This progression is the result of coordinated changes in the function of 5-HT7 and 5-HT2A receptors, which mediate different aspects of the depolarization, and of 5-HT1A receptors, which signal the late developing hyperpolarization. The loss of the 5-HT7 receptor-mediated depolarization and the appearance of the 5-HT1A receptor-mediated hyperpolarization appears to reflect changes in receptor expression. In contrast, the decline in the 5-HT2A receptor depolarization with increasing age was associated with changes in the effectiveness with which these receptors could elicit a membrane depolarization, rather than loss of the receptors per se. Together, these results outline coordinated changes in the serotonergic regulation of cortical excitability at a time of extensive synaptic development and thus suggest a key role for these receptor subtypes in the postnatal development of the prefrontal cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6729457 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5113-03.2004 | DOI Listing |
Cereb Cortex
August 2025
Department of Developmental Psychology, University of Amsterdam, Nieuwe Achtergracht 129b, 1018 WS Amsterdam, The Netherlands.
Social learning, a hallmark of human behavior, entails integrating other's actions or ideas with one's own. While it can accelerate the learning process by circumventing slow and costly individual trial-and-error learning, its effectiveness depends on knowing when and whose information to use. In this study, we explored how individuals use social information based on their own and others' levels of uncertainty.
View Article and Find Full Text PDFJAACAP Open
September 2025
Stanford University, Stanford, California.
Objective: To assess biological factors associated with anhedonia in depression and amotivation in cannabis use (PROSPERO: CRD42023422438).
Method: A systematic review was conducted of 8 electronic databases. Inclusion criteria included original research studies that investigated the association of biological factors or behavioral tasks with depression combined with concepts of anhedonia or cannabis combined with concepts of amotivation including apathy.
Alzheimers Dement
September 2025
Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Introduction: Antisocial behaviors occur in dementia, but the underlying neurocognitive mechanisms remain underexplored. We administered a decision-making task measuring patients' harm aversion by offering options to shock themselves or another person in exchange for money, hypothesizing that task performance would relate to antisocial behaviors and ventromedial/orbitofrontal cortex (vmPFC/OFC) atrophy.
Methods: Among 43 dementia patients (n = 23 behavioral variant frontotemporal dementia [bvFTD], n = 20 Alzheimer's disease [AD]), we used linear regressions to measure relationships between harm aversion and antisocial behavior, psychopathic personality traits, socioemotional functions, and vmPFC/OFC cortical thickness, controlling for age, sex, and cognitive dysfunction.
Neuropsychopharmacology
September 2025
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
Severe worry is a transdiagnostic, highly prevalent symptom, difficult to treat and associated with significant morbidity in late life. Understanding the neural correlates of worry induction and reappraisal in older adults is key to developing novel treatments. We recruited 124 older adults ( ≥ 50 years old) with varying worry severity and clinical comorbidity (27% generalized anxiety disorder, 23% depressive disorders).
View Article and Find Full Text PDFNeuropsychopharmacology
September 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Chronic treatment with fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI), is known to promote neural plasticity. The role of fluoxetine in plasticity has been particularly tied to parvalbumin-positive interneurons, a key population of GABAergic neurons that regulate inhibitory tone and network stability. While our previous studies have highlighted fluoxetine-induced plasticity in the visual cortex and hippocampus, its cell-type-specific effects in the prefrontal cortex (PFC) remain unclear.
View Article and Find Full Text PDF