Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.

Adv Drug Deliv Rev

Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.

Published: May 2004


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polymeric micelles have a whole set of unique characteristics, which make them very promising drug carriers, in particular, for poorly soluble drugs. Our review article focuses on micelles prepared from conjugates of water-soluble polymers, such as polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), with phospholipids or long-chain fatty acids. The preparation of micelles from certain polymer-lipid conjugates and the loading of these micelles with various poorly soluble anticancer agents are discussed. The data on the characterization of micellar preparations in terms of their morphology, stability, longevity in circulation, and ability to spontaneously accumulate in experimental tumors via the enhanced permeability and retention (EPR) effect are presented. The review also considers the preparation of targeted immunomicelles with specific antibodies attached to their surface. Available in vivo results on the efficiency of anticancer drugs incorporated into plain micelles and immunomicelles in animal models are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.addr.2003.12.004DOI Listing

Publication Analysis

Top Keywords

water-soluble polymers
8
soluble drugs
8
micelles
6
micelles lipid
4
lipid derivatives
4
derivatives water-soluble
4
polymers delivery
4
delivery systems
4
systems soluble
4
drugs polymeric
4

Similar Publications

Objectives: Norvir oral powder [ritonavir (RTV)] employs polyvinylpyrrolidone/vinyl acetate as the polymer to formulate an amorphous solid dispersion. Its oral absolute bioavailability is 70% in the fasted state, and it has negative food effects. The aim of this study was to perform in vitro dissolution of Norvir powder and Wagner-Nelson deconvolution of data under fasted, moderate fat, and high fat conditions in order to elucidate the relevance of dissolution testing.

View Article and Find Full Text PDF

α-Lipoic acid (LA) has recently emerged as an attractive, inexpensive monomer for synthesizing degradable polymers via ring-opening of its 1,2-dithiolane, introducing easily cleavable disulfide linkages into polymer backbones. Reversible addition-fragmentation chain transfer (RAFT) copolymerization with vinyl monomers enables access to degradable poly(disulfide)s with controlled molecular weights. However, conventional thermal RAFT methods suffer from oxygen sensitivity, limited LA incorporation (<40 mol%), and modest degrees of polymerization (DP < 300).

View Article and Find Full Text PDF

Gum arabic in drug delivery systems: A route-specific overview and functional insights.

Carbohydr Polym

November 2025

Department of Pharmaceutical Analysis, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra 400056, India. Electronic address:

Gum Arabic (GA), a naturally occurring polysaccharide, has emerged as a promising biomaterial for drug delivery systems (DDS) due to its high water solubility, emulsifying capacity, biocompatibility, and biodegradability. Its structural richness in arabinogalactan facilitates strong interactions with biomolecules, enabling the development of various drug formulations including hydrogels, nanoparticles, liposomes, and emulsions. GA-based DDS have demonstrated significant potential in enhancing the solubility of poorly water-soluble drugs, protecting bioactive compounds from degradation, and enabling sustained and controlled drug release.

View Article and Find Full Text PDF

Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to manage pain and inflammation but are associated with gastrointestinal and cardiovascular risks, especially with COX-2 inhibitors. Topical delivery systems offer a safer alternative by minimizing systemic exposure; however, poor solubility and limited skin penetration remain challenges. Enhancing solubility through solid dispersion and incorporating it into a gel formulation may improve permeability and therapeutic effectiveness, addressing the need for safer and more efficient topical NSAID delivery.

View Article and Find Full Text PDF

Scar-reducing ionically conductive chitosan bandage: Combining ionic and electrical stimulation for optimal wound healing.

Biomaterials

August 2025

Nebraska Translational Research Center (NTRC), Department of Growth and Development, College of Dentistry, University of Nebraska Medical Center, Omaha, NE, USA. Electronic address:

Large, complex wounds frequently exhibit suboptimal healing, leading to scarring and functional impairment. While bioactive materials and electrical stimulation (ES) show promise, their individual limitations call for novel approaches. This study investigates the combined effects of combining 4-aminopyridine (4AP) and electrical stimulation (ES) on human dermal fibroblasts (hDFBs) using a stable, ionically conductive (IC) chitosan-based scaffold for controlled drug delivery.

View Article and Find Full Text PDF