Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In childhood acute lymphoblastic leukaemia (ALL), cytogenetics play an important role in diagnosis, allocation of treatment and prognosis. Conventional cytogenetic analysis, involving mainly karyotyping in our experience, has not been successful in a large proportion of cases due to inadequate metaphase spreads and poor chromosome morphology. Our aim is to develop a highly sensitive and specific method to screen simultaneously for the four most frequent fusion transcripts resulting from specific chromosomal translocations, namely, both the CML- and ALLtype BCR-ABL transcripts of t(9;22), E2A-PBX1 transcript of t(1;19), the MLL-AF4 transcript of t(4;11) and TEL-AML1 (also termed ETV6-CBFA2) of the cryptic t(12;21). A multiplex reverse transcription polymerase chain reaction protocol (RT-PCR) was developed and tested out on archival bone marrow samples and leukaemia cell lines. In all samples with a known translocation detected by cytogenetic techniques, the same translocation was identified by the multiplex-PCR assay. Multiplex RT-PCR assay is an effective, sensitive, accurate and cost-effective diagnostic tool which can improve our ability to accurately and rapidly risk-stratify patients with childhood ALL.

Download full-text PDF

Source

Publication Analysis

Top Keywords

multiplex rt-pcr
8
rt-pcr assay
8
fusion transcripts
8
acute lymphoblastic
8
lymphoblastic leukaemia
8
validation multiplex
4
assay screening
4
screening oncogene
4
oncogene fusion
4
transcripts children
4

Similar Publications

Introduction: The aim of this study was to compare the performance of different clinical specimens-nasopharyngeal (NP) swabs collected by healthcare professionals (HCP-NP), self-collected nasal swabs (Sc-N), and saliva samples (S)-in diagnostic tests for investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and influenza A/B RNA.

Methodology: These clinical samples were collected from 404 symptomatic cases and tested with the SARS-CoV-2 and influenza A/B RNA tests on the cobas 6800 System of Roche Molecular Systems (Roche Molecular Systems, Pleasanton, USA). The SARS-CoV-2 or influenza virus infection status was determined for all patients based on the predefined criteria and corresponding algorithms.

View Article and Find Full Text PDF

Application of a comprehensive approach to pathogen screening in a stowaway rat on an airplane.

Sci Rep

August 2025

Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany.

In April 2017, a rat was observed on an airplane during a flight from Miami (USA) to Berlin (Germany). After landing in Berlin, significant efforts were made to trap the rat and disinfect the airplane. As rats are known reservoir hosts for a variety of zoonotic pathogens, this event necessitated the establishment of a standard workflow for the detection of rodent-borne pathogens.

View Article and Find Full Text PDF

Wastewater can serve as both a source of pathogens that pose risks to human health and a valuable resource for tracking and predicting disease prevalence through wastewater-based surveillance (WBS). In WBS for SARS-CoV-2, both nucleocapsid-specific (N1 and N2) and the envelope (E) genes are common targets for primer design, but ambiguity remains regarding differences in results depending on the gene target chosen. This study investigated how and why two SARS-CoV-2 gene targets (N2 and E) varied when analyzed in a multiplex RT-ddPCR assay for a COVID-19 wastewater monitoring study.

View Article and Find Full Text PDF

Detection of Microorganisms Causing Human Respiratory Infection Using One-Tube Multiplex PCR.

Infect Dis Rep

August 2025

Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia 38405-302, Minas Gerais, Brazil.

Due to the significant overlap in symptoms between COVID-19 and other respiratory infections, a multiplex PCR-based platform was developed to simultaneously detect 22 respiratory pathogens. Target sequences were retrieved from the GenBank database and aligned using Clustal Omega 2.1 to identify conserved regions prioritized for primer design.

View Article and Find Full Text PDF

Background: As crucial pollinators sustaining agricultural ecosystem services and biodiversity, bees mediate pollination for approximately 35% of global insect-pollinated crops and generate multidimensional ecological value through apicultural products in the pharmaceutical and food industries. However, emerging viral pathogens pose escalating threats to bee health.

Results: To address the technical bottlenecks in pathogen detection for viral paralysis disease in bees, this study innovatively integrated multiplex RT-PCR amplification, lateral flow dipstick (LFD), and centrifugal microfluidic chip technology (MFCT) to develop an on-site quadruple detection platform capable of simultaneously identifying four viruses: Chronic Bee Paralysis Virus (CBPV), Black Queen Cell Virus (BQCV), Deformed Wing Virus (DWV), and Israeli Acute Paralysis Virus (IAPV).

View Article and Find Full Text PDF