98%
921
2 minutes
20
3H and 99Tc are important nuclides in low and intermediate level radioactive wastes, and in safety assessment of near surface repository their migration characteristic usually determines the computing result. The medium of loess appears to possess the characteristic of weak adsorption ability to 3H and 99Tc when they are migrating in it, so the adsorption ability are often neglected, and 3H are used to identify groundwater velocity. But in the field test it was showed that in the aerated zone loess possesses stronger adsorption ability to 99Tc than to 3H, and in the aquifer the stronger adsorption ability to 3H than to 99Tc. In this paper the migration tests of 3H and 99Tc were simulated by NESOR program of non-equilibrium adsorption model. The results show: 99Tc distribution coefficient ranges 0.05-0.055 mL/g in the aerated zone, 3H distribution coefficient is 0.116 mL/g in the aquifer, and the parameter reflects integrated impact of loess on 3H and 99Tc, and the mechanism of them being retarded still need proving.
Download full-text PDF |
Source |
---|
Appl Environ Microbiol
September 2025
DGIMI, Université de Montpellier, INRAE, Montpellier, France.
is an entomopathogenic bacterium involved in a mutualistic relationship with nematodes. produces a multitude of specialized metabolites by non-ribosomal peptide synthetase (NRPS) pathways to mediate bacterium-nematode-insect interactions. PAX cyclolipopeptides are a family of NRP-type molecules whose ecological role remains poorly understood.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Dalseong-gun, Daegu 42988, Korea.
Cesium ions (Cs) are notable radioactive contaminants hazardous to humans and the environment. Among various remediation methods, adsorption is a practical way to remove Cs from water, and Prussian blue (PB) is well-known as an efficient Cs adsorbent. Although various PB derivatives have been proposed to treat Cs-contaminated water, soil remediation is still challenging due to the limited mobility of pollutants in soil.
View Article and Find Full Text PDFFront Microbiol
August 2025
State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
Introduction: Manganese-oxidizing bacteria (MOB) play a critical role in converting soluble Mn(II) to insoluble Mn(III/IV) oxides, which have been widely applied for environmental remediation, particularly in heavy metal pollution control. Therefore, the discovery of novel MOB strains is of great significance for advancing pollution mitigation and ecosystem restoration.
Methods: In this study, a manganese-oxidizing bacterial strain was isolated from Mn-contaminated soil near an electroplating factory using selective LB medium supplemented with 10 mmol/L manganese chloride (MnCl), and the Leucoberbelin Blue (LBB) assay was employed to screen and identify strains with strong Mn(II)-oxidation ability.
Angew Chem Int Ed Engl
September 2025
State Key Laboratory of Bioinspired Interfacial Materials Science, Bioinspired Science Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China.
Electrochemical nitrogen fixation-a sustainable pathway for converting abundant N into NH using renewable energy-holds transformative potential for revolutionizing artificial nitrogen cycles. Nevertheless, even the state-of-the-art catalytic systems also suffer from inadequate N adsorption capacity, which critically limits ammonia production rates and Faradaic efficiency (FE). To overcome this bottleneck, we strategically leveraged the antiferroelectric properties of SnO to establish dipole-dipole interactions with N molecules, synergistically enhancing both N adsorption and activation kinetics.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
September 2025
Laboratory of Public Health, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
This study evaluated the cadmium (Cd) adsorption characteristics of sugarcane bagasse (BG) calcined at different temperatures (200-1000°C). The point of zero charge (pH) of the BGs ranged from 4.3 to 6.
View Article and Find Full Text PDF