98%
921
2 minutes
20
Objective: To evaluate the effect of bone morphogenetic protein (BMP) on the biological behavior of bone marrow stem cells (BMSCs) of rabbits.
Methods: BMP was either enwrapped or not in the microspheres made of chitosan and sodium alginate, and the biocompatibilities of the composites were examined by means of cell culture. The BMSCs were cultured with the two kinds of microspheres respectively, and the cell extension rate, proliferation, alkaline phosphatase activity and Coomassie blue staining of the cells were assayed.
Results: Inhibition of BMSC proliferation did not occur in response to in vitro culture with the microspheres, but alkaline phosphatase activity and D(lambda) values of Coomassie blue staining increased significantly in the cells cultured with BMP microspheres.
Conclusion: BMP can increase the osteogenic capacity of BMSCs in vitro with the microspheres made of chitosan and sodium alginate as the carrier.
Download full-text PDF |
Source |
---|
Cell Signal
September 2025
Department of Orthopedics, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China. Electronic address:
Bone morphogenetic proteins (BMPs) are effective for treating various orthopedic conditions and are widely used clinically. However, their therapeutic efficacy is limited in osteoporosis patients. Iron overload represents a key risk factor for osteoporosis, inducing ferroptosis and suppressing the osteogenic differentiation of bone marrow stromal cells (BMSCs).
View Article and Find Full Text PDFDev Cell
September 2025
Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK. Electronic address:
Lineage specification requires accurate interpretation of multiple signaling cues. However, how combinatorial signaling histories influence fate outcomes remains unclear. We combined single-cell transcriptomics, live-cell imaging, and mathematical modeling to explore how activin and bone morphogenetic protein 4 (BMP4) guide fate specification during human gastrulation.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Orthopedic Surgery, Center for Shoulder and Elbow Surgery, Konkuk University School of Medicine, Seoul, Korea.
Purpose: We aimed to compare the effects of atelocollagen (AC) and individual growth factors on the expression of key molecular markers associated with tendon healing.
Methods: C2C12 myoblasts were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 5% fetal bovine serum (FBS) and treated with 1 nM or 10 nM of Atelocollagen (AC), bone morphogenetic protein-2 (BMP-2), transforming growth factor-beta 1 (TGF-β1), insulin-like growth factor-1 (IGF-1), or vascular endothelial growth factor (VEGF) for 5 days. After 5 days of treatment, cells were harvested from the culture medium, and Western blot analysis was performed to quantify the expression of phosphorylated extracellular signal-regulated kinase (p-ERK), Collagen type I (Col I), Collagen type Ⅲ (Col Ⅲ), and Tenascin C (TnC).
ACS Synth Biol
September 2025
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.
Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan.
Immune cells, such as macrophages, stimulated by several types of inorganic ions released from bioactive glasses secrete cytokines that promote and inhibit bone formation. In this study, the effects of borate-ion-stimulated mouse macrophages (RAW264) on the osteogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (KUSA-A1) are investigated. KUSA-A1 is cultured with a borate-ion-containing medium and RAW264-conditioned medium, which contained the secretome released from boron-stimulated RAW264, and its osteogenic differentiation is evaluated.
View Article and Find Full Text PDF