Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A specific role for ascorbate (AA) in brain development has been postulated based on a rise of AA levels in fetal brain (Kratzing et al., 1985). To evaluate the role of AA during CNS development, we analyzed the survival, proliferation, and differentiation of AA-treated CNS precursor cells isolated from rat embryonic cortex. Immunocytochemical analyses revealed that AA promoted the in vitro differentiation of CNS precursor cells into neurons and astrocytes in a cell density-dependent manner. Additionally, AA increased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) of postmitotic neurons in primary neuronal cultures. Differential expression analysis of genes specific to neuronal or glial differentiation revealed an AA-dependent increase in the expression of genes that could potentially compound the effects of AA on cell differentiation. These data suggest that AA may act in the developing brain to stimulate the generation of CNS neurons and glia, thereby assisting in the formation of neural circuits by promoting the acquisition of neuronal synaptic functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.10647 | DOI Listing |