Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
A miniature broadband light source is a critical element in a spectrophotometric microsystem. The design, fabrication, and characterization of a highly stable, miniature broadband light source that comprises filaments of single-crystal silicon are presented. Electrical current versus voltage and radiant emittance spectra under constant voltage bias are measured and related to filament dimensions. A maximum stable operating temperature for these filaments is estimated to be 1200 K. Resistance drift is demonstrated to be less than 0.5% over a 10-h period of continuous operation with visible incandescence. Emittance spectra of a multifilament array, measured at three different electrical biases, are presented and shown to compare well with theoretical blackbody radiation spectra. A continuous, total radiated power of 10.7 mW was achieved with a 1 mm x 1 mm filament array with peak emittance at lambda=2.7 micrometers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ao.42.002388 | DOI Listing |