Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In plants, two pathways are utilized for the synthesis of isopentenyl diphosphate, the universal precursor for isoprenoid biosynthesis. The key enzyme of the cytoplasmic mevalonic acid (MVA) pathway is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). Treatment of Tobacco Bright Yellow-2 (TBY-2) cells by the HMGR-specific inhibitor mevinolin led to growth reduction and induction of apparent HMGR activity, in parallel to an increase in protein representing two HMGR isozymes. Maximum induction was observed at 24 h. 1-Deoxy-d-xylulose (DX), the dephosphorylated first precursor of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, complemented growth inhibition by mevinolin in the low millimolar concentration range. Furthermore, DX partially re-established feedback repression of mevinolin-induced HMGR activity. Incorporation studies with [1,1,1,4-2H4]DX showed that sterols, normally derived from MVA, in the presence of mevinolin are synthesized via the MEP pathway. Fosmidomycin, an inhibitor of 1-deoxy-d-xylulose-5-phosphate reductoisomerase, the second enzyme of the MEP pathway, was utilized to study the reverse complementation. Growth inhibition by fosmidomycin of TBY-2 cells could be partially overcome by MVA. Chemical complementation was further substantiated by incorporation of [2-13C]MVA into plastoquinone, representative of plastidial isoprenoids. Best rates of incorporation of exogenous stably labeled precursors were observed in the presence of both inhibitors, thereby avoiding internal isotope dilution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M302526200 | DOI Listing |