A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Quantitative assessment of angiogenic responses by the directed in vivo angiogenesis assay. | LitMetric

Quantitative assessment of angiogenic responses by the directed in vivo angiogenesis assay.

Am J Pathol

Extracellular Matrix Section, Laboratory of Pathology, and the Vascular Biology Faculty, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD20892, USA.

Published: May 2003


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the major problems in angiogenesis research remains the lack of suitable methods for quantifying the angiogenic response in vivo. We describe the development and application of the directed in vivo angiogenesis assay (DIVAA) and demonstrated that it is reproducible and quantitative. This assay consists of subcutaneous implantation of semiclosed silicone cylinders (angioreactors) into nude mice. Angioreactors are filled with only 18 micro l of extracellular matrix premixed with or without angiogenic factors. Vascularization within angioreactors is quantified by the intravenous injection of fluorescein isothiocyanate (FITC)-dextran before their recovery, followed by spectrofluorimetry. Angioreactors examined by immunofluorescence show cells and invading angiogenic vessels at different developmental stages. The minimally detectable angiogenic response requires 9 days after implantation and >/=50 ng/ml (P < 0.01) of either fibroblast growth factor-2 or vascular endothelial growth factor. Characterization of this assay system demonstrates that the FITC-labeled dextran quantitation is highly reproducible and that levels of FITC-dextran are not significantly influenced by vascular permeability. DIVAA allows accurate dose-response analysis and identification of effective doses of angiogenesis-modulating factors in vivo. TNP-470 potently inhibits angiogenesis (EC(50) = 88 pmol/L) induced by 500 ng/ml of fibroblast growth factor-2. This inhibition correlates with decreased endothelial cell invasion. DIVAA efficiently detects differences in anti-angiogenic potencies of thrombospondin-1 peptides (25 micro mol/L) and demonstrates a partial inhibition of angiogenesis ( approximately 40%) in a matrix metalloprotease (MMP)-2-deficient mouse compared with that in wild-type animals. Zymography of angioreactors from MMP-deficient and control animals reveals quantitative changes in MMP expression. These results support DIVAA as an assay to compare potencies of angiogenic factors or inhibitors, and for profiling molecular markers of angiogenesis in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1851187PMC
http://dx.doi.org/10.1016/S0002-9440(10)64276-9DOI Listing

Publication Analysis

Top Keywords

directed vivo
8
vivo angiogenesis
8
angiogenesis assay
8
angiogenic response
8
angiogenic factors
8
fibroblast growth
8
growth factor-2
8
angiogenic
6
angiogenesis
6
vivo
5

Similar Publications