Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Formation of the cartilaginous otic capsule is directed by otic epithelial-periotic mesenchymal interactions. In response to induction by otic epithelium, condensations of mesenchyme appear in the periotic region and form a chondrified otic capsule that serves as the template for the subsequent formation of the endochondral bony labyrinth. Previous studies indicate that members of the transforming growth factor beta superfamily, including transforming growth factor beta(1), participate in guiding these tissue interactions. In this study, we report the localization of bone morphogenetic protein 4 (BMP4) to the mesenchymal and epithelial-derived tissues of the mouse inner ear between 10.5 and 14 days of embryonic development. We demonstrate modulation of chondrogenesis in cultured mouse periotic mesenchyme by exogenous BMP4 protein and investigate the function of endogenous BMP4 in otic capsule chondrogenesis. We show that in the presence of the BMP antagonist, Noggin, otic capsule chondrogenesis is suppressed in culture in a dose-dependent manner. Consistent with this finding, addition of BMP4-specific antisense oligonucleotide to cultures of mouse periotic mesenchyme containing otic epithelium decreases levels of endogenous BMP4 protein and suppresses the chondrogenic response of the cultured periotic mesenchyme, providing evidence of the necessity for BMP4 in mediating otic capsule chondrogenesis. Supplementation of either Noggin- or BMP4 antisense oligonucleotide-treated cultures with BMP4 protein can restore the extent of chondrogenesis to normal levels. Our findings support BMP4 as an essential mediator of chondrogenesis in the developing otic capsule in situ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.10258 | DOI Listing |