Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Histone deacetylases (HDACs) modulate chromatin structure and transcription. HDACs have been studied as negative regulators in eukaryotic transcription. We isolated the rice OsHDAC1-3 genes for class I-type histone deacetylases, which are related to the RPD3 family. The OsHDAC1 gene encoded a protein of approximately 57 kDa that shared 73.5, 72.7, 79.9, and 57.1% amino acid sequence identity with the OsHDAC2, OsHDAC3, maize RPD3, and human HDAC1 proteins, respectively. Genomic structures and Southern blot analyses revealed that OsHDAC1-3 contained seven, six, and seven exons, respectively, and constituted a class I-type family in the rice genome. OsHDAC1 was expressed at similar levels in the leaves, roots, and callus cells, whereas OsHDAC2 and 3 were expressed in the roots and callus cells, but not in the leaves, exhibiting distinct tissue specificity. To explore the role of histone deacetylases in transgenic plants, we inserted the OsHDAC1 cDNA fragment into the expression vector Ai::OsHDAC1 under the control of the ABA-inducible promoter Ai, and transformed the construct into rice. Levels of mRNA, protein, and HDAC activity were significantly increased in Ai::OsHDAC1 callus cells. The amount of tetra-acetylated H4 in the transgenic cells was greatly reduced, and the reduction was abolished upon treatment with trichostatin A. These results demonstrate that OsHDAC1 overexpression in transgenic cells both yields enzymatically active HDAC complexes and induces changes in histone acetylation in vivo. The overexpression leads to a range of novel phenotypes, involving increased growth rate and altered plant architecture, suggesting that OsHDAC1 functions in the genome-wide programming of gene expression.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-313x.2003.01650.xDOI Listing

Publication Analysis

Top Keywords

histone deacetylases
12
callus cells
12
oshdac1 overexpression
8
overexpression transgenic
8
transgenic plants
8
increased growth
8
growth rate
8
rate altered
8
class i-type
8
roots callus
8

Similar Publications

Expression of metabolic genes in NK cells is associated with clinical outcomes in patients with severe COVID-19: a brief report.

Front Cell Infect Microbiol

September 2025

Universidad Autónoma de Nuevo León, Servicio y Departamento de Inmunología, Facultad de Medicina, Monterrey, NL, Mexico.

Natural killer (NK) cells are innate lymphocytes with cytotoxic activity against tumors and viruses. The pandemic of the coronavirus disease 2019 (COVID-19) has increased the investigation of their role in disease severity. However, their functional status and modulators remain controversial.

View Article and Find Full Text PDF

SIRT2 and NAD Boosting Broadly Suppress Aging-Associated Inflammation.

Aging Cell

September 2025

Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA.

Aging leads to chronic inflammation that is linked to aging-associated conditions and diseases. Multiple immune pathways become activated during aging, posing a challenge to effectively reduce aging-associated inflammation. SIRT2, an NAD-dependent deacetylase, suppresses several immune pathways that become activated during aging and may represent an attractive target to broadly dampen aging-associated inflammation.

View Article and Find Full Text PDF

Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.

View Article and Find Full Text PDF

SGLT-2 inhibitors are a relatively new class of antidiabetic drugs. They activate a transcriptional response similar to calorie restriction characterized by the up-regulation of sensors involved in nutrient deprivation, such as SIRT1 and AMPK, and the down-regulation of mTOR, a molecule involved in nutritional excess signaling. The purpose of this review is to illustrate the main pathways of nutrient deprivation: a complex mechanistic framework partly responsible for the cardio-renal benefits that makes these drugs unique.

View Article and Find Full Text PDF

Aortic valve stenosis is a progressive and increasingly prevalent disease in older adults, with no approved pharmacologic therapies to prevent or slow its progression. Although genetic risk factors have been identified, the contribution of epigenetic regulation remains poorly understood. Here, we demonstrated that histone deacetylase 3 (HDAC3) maintains aortic valve structure by suppressing mitochondrial biogenesis and preserving extracellular matrix integrity in valvular interstitial fibroblasts.

View Article and Find Full Text PDF