98%
921
2 minutes
20
Saccharomyces cerevisiae has evolved a number of mechanisms for sensing glucose. In the present study we examine the mechanism by which one of these pathways, involving Snf1, regulates cellular aging. Snf1 is a heterotrimer composed of a catalytic alpha subunit (Snf1p) that phosphorylates target proteins at Ser/Thr residues, an activating gamma subunit (Snf4p), and a beta subunit (Sip1p, Sip2p, or Gal83). We previously showed that forced expression of Snf1p or loss of Sip2p, but not the other beta subunits, causes accelerated aging, while removal of Snf4p extends life span (Ashrafi, K., Lin, S. S., Manchester, J. K., and Gordon, J. I. (2000) Genes Dev. 14, 1872-1885). We now demonstrate that in wild type cells, there is an age-associated shift in Sip2p from the plasma membrane to the cytoplasm, a prominent redistribution of Snf4p from the plasma membrane to the nucleus, a modest increase in nuclear Snf1p, and a concomitant increase in cellular Snf1 histone H3 kinase activity. Covalent attachment of myristate to the N-terminal Gly of Sip2p is essential for normal cellular life span. When plasma membrane association of Sip2p is abolished by a mutation that blocks its N-myristoylation, Snf4p is shifted to the nucleus. Rapidly aging sip2 Delta cells have higher levels of histone H3 kinase activity than their generation-matched isogenic wild type counterparts. Increased Snf1 activity is associated with augmented recombination at rDNA loci, plus desilencing at sites affected by Snf1-catalyzed Ser(10) phosphorylation of histone H3 (the INO1 promoter plus targets of the transcription factor Adr1p). The rapid-aging phenotype of sip2 Delta cells is fully rescued by blocking recombination at rDNA loci with a fob1 Delta allele; rescue is not accompanied by amelioration of an age-associated shift toward gluconeogenesis and glucose storage. Together, these findings suggest that Sip2p acts as a negative regulator of nuclear Snf1 activity in young cells by sequestering its activating gamma subunit at the plasma membrane and that loss of Sip2p from the plasma membrane to the cytoplasm in aging cells facilities Snf4p entry into the nucleus so that Snf1 can modify chromatin structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M212818200 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
Multivalent binding and the resulting dynamical clustering of receptors and ligands are known to be key features in biological interactions. For optimizing biomaterials capable of similar dynamical features, it is essential to understand the first step of these interactions, namely the multivalent molecular recognition between ligands and cell receptors. Here, we present the reciprocal cooperation between dynamic ligands in supramolecular polymers and dynamic receptors in model cell membranes, determining molecular recognition and multivalent binding via receptor clustering.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853.
Ovulation is an intricate process that is essential for reproductive success. In , ovulation increases after mating. This increase is initiated by the male seminal fluid protein ovulin and is executed by female pathways, including octopamine (OA) neuronal signaling.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
Although clinical research has revealed microglia-related inflammatory and immune responses in bipolar disorder (BD) patient brains, it remains unclear how microglia contribute to the pathogenesis of BD. Here, we demonstrated that Serinc2 is associated with susceptibility to BD and showed a reduced expression in BDII patient plasma, which correlated with the disease severity. Using induced pluripotent stem cell (iPSC) models of sporadic and familial BDII patients, we found that Serinc2 expression showed deficits in iPSC-derived microglia-like cells, resulting in decreased synaptic pruning.
View Article and Find Full Text PDFPLoS Pathog
September 2025
Department of Molecular, Cellular and Developmental Biology, University of California, Santa Cruz, California, United States of America.
The discovery of the endosymbiotic bacteria Wolbachia as an obligate symbiont of. filarial nematodes has led to antibiotic-based treatments for filarial diseases. While lab.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Biology, The University of Saskatchewan, College of Arts and Science, Saskatoon, Canada.
Plasmodesmata are specialized structures in plant cell walls that mediate intercellular communication by regulating the trafficking of molecules between adjacent cells. The actin cytoskeleton plays a pivotal role in controlling plasmodesmatal permeability, but the molecular mechanisms underlying this regulation remain unclear. Here, we report that BRK1, a component of the WAVE/SCAR complex involved in Arp2/3-mediated actin nucleation, localizes to PD and primary pit fields in A.
View Article and Find Full Text PDF